This formula only applies if the track is circular. If it is, then we write the equation:
2*r*pi=400
Dividing by 2pi, we see that:
r=200/pi
This is approximately 63.66.
Answer:
ag=74 and ed=83
Step-by-step explanation:
super simple actually
Answer:
x = 3 1/2
Step-by-step explanation:
You could simplify the given equation first, then solve the resulting 2-step linear equation. It might work better to undo the operations done to the variable.
<h3>Solution</h3>
(5 1/6 -x)(2.7) -5 3/4 = -1 1/4 . . . . . given
(5 1/6) -x)(2.7) = 4 1/2 . . . . . . . add 5 3/4 to both sides
(5 1/6 -x) = 4.5/2.7 = 5/3 . . . divide by 2.7
31/6 -10/6 = x . . . . . . . . . . add x-5/3, use common denominators
21/6 = x = 7/2
x = 3 1/2
Answer:
44 cm
Step-by-step explanation:
Half of the diameter is the radius so half 88 to get 44 since 88 is the diameter.
Given plane Π : f(x,y,z) = 4x+3y-z = -1
Need to find point P on Π that is closest to the origin O=(0,0,0).
Solution:
First step: check if O is on the plane Π : f(0,0,0)=0 ≠ -1 => O is not on Π
Next:
We know that the required point must lie on the normal vector <4,3,-1> passing through the origin, i.e.
P=(0,0,0)+k<4,3,-1> = (4k,3k,-k)
For P to lie on plane Π , it must satisfy
4(4k)+3(3k)-(-k)=-1
Solving for k
k=-1/26
=>
Point P is (4k,3k,-k) = (-4/26, -3/26, 1/26) = (-2/13, -3/26, 1/26)
because P is on the normal vector originating from the origin, and it satisfies the equation of plane Π
Answer: P(-2/13, -3/26, 1/26) is the point on Π closest to the origin.