1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
2 years ago
8

How much does a tomato weigh

Physics
1 answer:
Scilla [17]2 years ago
5 0

Answer:

A serving or portion  of fresh tomatoes is equivalent to one medium-sized tomato. The average medium-sized tomato weighs between 75 and 150 g (2.65.3 oz) and contains 14 - 27 calories.

Explanation:

You might be interested in
A freight train rolls along a track with considerable momentum. If it rolls at the same speed but hastwice as much mass, its mom
Margaret [11]

Its Momentum Would Be Doubled

8 0
3 years ago
Where should you place the values of the independent variable when constructing a data table?
kobusy [5.1K]
<span>On the y-axis (the bottom of the table) hope this helps</span>
4 0
3 years ago
Read 2 more answers
Convert 75°C into (A) kelvin (B) °F​
sukhopar [10]

Answer:

348.15K

Explanation:

75C+273.15=348.15K

7 0
3 years ago
A ball is shot from the ground into the air. At a height of 8.8 m, the velocity is observed to be
Mariulka [41]

Answer:

h = 10.4 m

R = 22.48 m

v= 16,2 m/s , α = 61.7°, below the horizontal

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

Explanation:

The ball describes a parabolic path, and the equations of the movement are:

Equation of the uniform rectilinear motion (horizontal ) :

x = vx*t  :

Equations of the uniformly accelerated rectilinear motion of upward   (vertical ).

y = (v₀y)*t - (1/2)*g*t² Equation (2)

vfy² = v₀y² -2gy Equation (3)

vfy = v₀y -gt Equation (4)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m  

y: vertical position in meters (m)  

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Known data

y= 8.8 m

v = ( (7.7)i + (5.7)j  ) m/s : vx= 7.7 m/s , vy= 5.7 m/s

g = 9.8 m/s²

Calculation of the  initial  vertical velocity ( v₀y)

We apply Equation (3) with the known data

(vfy)² = (v₀y)² -2*g*y

(5.7)² = (v₀y)²- (2)*(9.8)*(8.8)

(5.7)²+ 172.48 =  (v₀y)²

v_{oy} = \sqrt{(5.7)^{2}+ 172.48 }

v₀y = 14.3 m/s

Calculation of the maximum height  the ball rise (h)

In the maximum height vfy=0

We apply the Equation (3) :

(vfy)² = (v₀y)² -2*g*y

0 = (14.3)² - 2*98*h

h = (14.3)² / 19.6

h = 10.4 m

Calculation of the time it takes for the ball to the maximum height

We apply the Equation (4) :

vfy = v₀y -gt

0 = v₀y -gt

gt = v₀y

t = v₀y/g

t = 14.3/9.8

t= 1.46 s

Flight time = 2t = 2.92 s

Total horizontal distance traveled by the ball  (R)

We replace data in the equation (1)

x =vx*t    vx= 7.7 m/s , t =2.92 s  (Flight time)

R = (7.7)* (2.92) = 22.48 m

Velocity of the ball (magnitude (v) and direction (α)) the instant before it hits the ground

vx = 7.7 m/s

vy = v₀y -gt = 14.3 - 9.8* (2.92) = -14.3 m/s

v= \sqrt{v_{x}^{2}+v_{y}^{2}  }

v= \sqrt{(7.7)^{2}+ (-14.3)^{2}  }

v= 16,2 m/s

\alpha = tan^{-1} (\frac{v_{y} }{v_{x} })

\alpha = tan^{-1} (\frac{-14.3 }{7.7 })

α = -61.7°

α = 61.7°, below the horizontal

i- j components of the v

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

5 0
3 years ago
A large rocket has a mass of 2.00×10⁶ kg at takeoff, and its engines produce a thrust of 3.50×10⁷ N. Find its initial accelerati
Kazeer [188]

Answer:

17.5 m/s²

1.90476 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

Force

F=ma\\\Rightarrow a=\frac{F}{m}\\\Rightarrow a=\frac{3.5\times 10^7}{2\times 10^6}\\\Rightarrow a=17.5\ m/s^2

Initial acceleration of the rocket is 17.5 m/s²

v=u+at\\\Rightarrow \frac{120}{3.6}=0+17.5t\\\Rightarrow t=\frac{\frac{120}{3.6}}{17.5}=1.90476\ s

Time taken by the rocket to reach 120 km/h is 1.90476 seconds

Change in the velocity of a rocket is given by the Tsiolkovsky rocket equation

\Delta v=v_{e}\ln \frac{m_0}{m_f}

where,

m_0 = Initial mass of rocket with fuel

m_f = Final mass of rocket without fuel

v_e = Exhaust gas velocity

Hence, the change in velocity increases as the mass decreases which changes the acceleration

4 0
3 years ago
Other questions:
  • In a(n) BLANK , the matter’s identity stays the same.
    13·1 answer
  • If the x-component of a vector is 17, and the angle between the vector and the x-axis is 46 degrees, what is the magnitude of th
    14·2 answers
  • An adiabatic expansion refers to the fact that:
    12·1 answer
  • Where do most metamorphic processes take place?
    8·1 answer
  • A nylon string has a diameter of 2 mm pulled by a force of 100 Newton. Determine the stress?
    6·1 answer
  • An ecologist studies a forest area for evidence of competition among organisms. She chooses a specific location where a tree was
    10·2 answers
  • Consider a car engine running at constantspeed. That is, the crankshaft of the en-gine rotates at constant angular velocity whil
    6·1 answer
  • Liquids, when heated,
    14·1 answer
  • Why is electric current scalar quantity with having direction ?​
    9·2 answers
  • An ambulance traveled on roads from the hospital 14 kilometers east, then 16 kilometers north to reach an accident. If the ambul
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!