Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
D
Explanation:
Because I just had that answer
None I mean you have to take a drivers test but you will have to take the knowldege test twice
Answer:
leather
Explanation:
plz mark as brainliest......hope it helps
True! The mechanical advantage of the wheel and axle is equal to the ratio of the radius of the wheel over the radius of the axle.