Answer:
The value is 
Explanation:
From the question we are told that
The efficiency of the carnot engine is 
The efficiency of a heat engine is 
The operating temperatures of the carnot engine is
to 
The rate at which the heat engine absorbs energy is 
Generally the efficiency of the carnot engine is mathematically represented as
![\eta = [ 1 - \frac{T_1 }{T_2} ]](https://tex.z-dn.net/?f=%5Ceta%20%3D%20%20%5B%201%20-%20%5Cfrac%7BT_1%20%7D%7BT_2%7D%20%20%5D)
=> ![\eta = [ \frac{T_2 - T_1}{T_2} ]](https://tex.z-dn.net/?f=%5Ceta%20%3D%20%20%5B%20%5Cfrac%7BT_2%20-%20T_1%7D%7BT_2%7D%20%5D)
=> 
Generally the efficiency of the heat engine is

=> 
Generally the efficiency of the heat engine is also mathematically represented as

Here W is the work done which is mathematically represented as

Here
is the heat exhausted
So

=> 
=> 
Answer:
Work is the change in energy and power is the rate of doing work.
The solution would be like this for this specific problem:
Given:
diffraction grating
slits = 900 slits per centimeter
interference pattern that
is observed on a screen from the grating = 2.38m
maxima for two different
wavelengths = 3.40mm
slit separation .. d =
1/900cm = 1.11^-3cm = 1.111^-5 m <span>
Whenas n = 1, maxima (grating equation) sinθ = λ/d
Grant distance of each maxima from centre = y ..
<span>As sinθ ≈ y/D y/D =
λ/d λ = yd / D </span>
∆λ = (λ2 - λ1) = y2.d/D - y1.d/D
∆λ = (d/D) [y2 -y1]
<span>∆λ = 1.111^-5m x [3.40^-3m] / 2.38m .. .. ►∆λ = 1.587^-8 m</span></span>