Answer:
5.8 g
Explanation:
Molecular weight in Daltons is equivalent to the molecular weight in grams per mole.
The amount of NaCl required is calculated as follows:
(2 mol/L)(50 mL)(1 L/1000 mL) = 0.1 mol
This amount is converted to grams using the molar mass (58 g/mol).
(0.1 mol)(58 g/mol) = 5.8 g
Is this an actual question?
Answer : The rate law for formation of NOBr based on this mechanism is, ![\frac{k_1\times k_2}{k_1^-}[Br_2][NO]^2](https://tex.z-dn.net/?f=%5Cfrac%7Bk_1%5Ctimes%20k_2%7D%7Bk_1%5E-%7D%5BBr_2%5D%5BNO%5D%5E2)
Explanation :
The overall reaction is:

Rate law = ![k[Br_2][NO]^2](https://tex.z-dn.net/?f=k%5BBr_2%5D%5BNO%5D%5E2)
The first step of the overall reaction is:


Rate law 1 = ![k_1[Br_2][NO]](https://tex.z-dn.net/?f=k_1%5BBr_2%5D%5BNO%5D)
Rate law 2 = ![k_1^-[NOBr_2]](https://tex.z-dn.net/?f=k_1%5E-%5BNOBr_2%5D)
The second step of the overall reaction is:

Rate law 3 = ![k_2[NOBr_2][NO]](https://tex.z-dn.net/?f=k_2%5BNOBr_2%5D%5BNO%5D)
Now rate law of overall reaction can be obtained as follows.
We are multiplying rate law 1 and rate law 3 and dividing by rate law 2, we get:
Rate law = ![\frac{[k_1[Br_2][NO]]\times [k_2[NOBr_2][NO]]}{[k_1^-[NOBr_2]]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bk_1%5BBr_2%5D%5BNO%5D%5D%5Ctimes%20%5Bk_2%5BNOBr_2%5D%5BNO%5D%5D%7D%7B%5Bk_1%5E-%5BNOBr_2%5D%5D%7D)
Rate law = ![\frac{k_1\times k_2}{k_1^-}[Br_2][NO]^2](https://tex.z-dn.net/?f=%5Cfrac%7Bk_1%5Ctimes%20k_2%7D%7Bk_1%5E-%7D%5BBr_2%5D%5BNO%5D%5E2)
Rate law = ![k[Br_2][NO]^2](https://tex.z-dn.net/?f=k%5BBr_2%5D%5BNO%5D%5E2)
The rate law for formation of NOBr based on this mechanism is, ![\frac{k_1\times k_2}{k_1^-}[Br_2][NO]^2](https://tex.z-dn.net/?f=%5Cfrac%7Bk_1%5Ctimes%20k_2%7D%7Bk_1%5E-%7D%5BBr_2%5D%5BNO%5D%5E2)
Balanced half-reactions:
Anode: Fe2+ -> Fe
Cathode: Mg2+ -> Mg
The cell is voltaic because the cathode has a more negative reduction potential, causing the cell potential to be positive.
The electrons flow from the anode to the cathode.