Answer:
47.8 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O
Finally, we shall determine the number of mole of water, H₂O, produced by the reaction of 23.9 moles of O₂. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O.
Therefore, 23.9 moles of O₂ will react to produce = 23.9 × 2 = 47.8 moles of H₂O.
Thus, 47.8 moles of H₂O were obtained from the reaction.
Water-rich solutions carrying metallic salts fill cracks and form <u>veins</u>.
Se
1s^2 2s^2 2p^6 3s^2 3p^6 3d^10 4s^2 4p^4
<span><span><span>Be
1s^2 2s^2
</span></span></span>
Answer:
With Br2 - Bromobenzene
With Cl2 - Chlorobenzene
With HNO3- Nitrobenzene
With H2SO4 - Benzenesulphonic acid
With HCOCl - Benzoyl chloride
With 1-chloro-2,2-dimethylpropane - 2,2dimethyl-1-phenyl propane
Explanation:
The common thread joining all these reactions is that they are all electrophillic reactions. They are so called because the attacking agents in each reagent is an electrophile. Electrophiles are species that have electron deficient centers and are known to attack molecules that are high in electron density at regions of high electron density.
The benzene molecule has rich electron density. Any substituents that donates electrons to the ring improves the likelihood that benzene will undergo electrophillic substitution reactions while electron withdrawing substituents decrease the likelihood that benzene will undergo electrophillic substitution reactions.
The names of the compounds formed when benzene undergoes electrophillic reaction with the attacking agents listed in the question are displayed in the answer section.