Answer:
Use the "find vertically opposite angle" method.
a = 80°
To find the other angles:
Since the angles equal up to 360 which makes a full circle shape...
360 - 80 - 80 = 200 (B and C)
200 ÷ 2 = 100 (Angle for B and C since they are vertically opposite, hence having the same angle)
b = 100°
c = 100°
Answer:
standard form : 2x + y = -2
Answer:
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
---
answer:
z = 5*(1/2)
z = 5/10
---
time switching classes:
w = 7/10
---
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (76/10 - 5/10 - 7/10)/6
x = (76 - 5 - 7)/(10*6)
x = (64)/(10*6)
x = (2*2*2*2*2*2)/(2*5*2*3)
x = (2*2*2*2)/(5*3)
x = 16/15
x = 1.0666666666
---
check:
y = 7 + 3/5
y = 7.6
z = 1/2
z = 0.5
w = 7/10
w = 0.7
y - 6x - z - w = 0
6x = y - z - w
x = (y - z - w)/6
x = (7.6 - 0.5 - 0.7)/6
x = 1.0666666666
---
answer:
each class is 1.07 hours
Step-by-step explanation:
Answer:
<u>Cost = 25 + 50h</u>
cost for 8 hours of work = $425
cost for 10 hours of work = $525
Step-by-step explanation:
The question is as following:
A plumber charges $25 for a service call plus $50 per hour of service write an equation to represent the cost of hiring this plumber.
what will be the cost for 8 hours of work? 10 hours of work?
=======================================================
A plumber charges $25 for a service call plus $50 per hour
<u>Cost = 25 + 50h</u>
Where h is the number of hours of service
8 hours of work: h = 8
Substitute with h = 8 at the equation of cost
<u>Cost = 25 + 50* 8 = $425</u>
10 hours of work: h = 10
Substitute with h = 10 at the equation of cost
<u>Cost = 25 + 50 * 10 = $525</u>
Answer:
Rewrite the equation as
3
b
+
4
c
=
a
.
3
b
+
4
c
=
a
Subtract
4
c
from both sides of the equation.
3
b
=
a
−
4
c
Divide each term by
3
and simplify.
Tap for more steps...
b
=
a
3
−
4
c
3
Step-by-step explanation: