Let:
Vbu= Volume of the buret
Vbk= Volume of the beaker
A buret initially contains 70.00 millimeters of a solution and a beaker initially contains 20.00 ml of the solution the buret drips solution into the Beaker. each drip contains 0.05 mL of solution, therefore:
x = Number of drips
a = volume of each drip

after how many drips will the volume of the solution in the buret and beaker be equal ? Vbu = Vbk:
Using the normal distribution, it is found that 0.26% of the items will either weigh less than 87 grams or more than 93 grams.
In a <em>normal distribution</em> with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence
.
- The standard deviation is of 1 gram, hence
.
We want to find the probability of an item <u>differing more than 3 grams from the mean</u>, hence:



The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either weigh less than 87 grams or more than 93 grams.
For more on the normal distribution, you can check brainly.com/question/24663213
The possible different outcomes are: c. 6 outcomes.
you can only count "e" once because even though it is in the bag twice, drawing it a second time would be the same outcame.
hope this help
Answer:
3
Step-by-step explanation:
Those are factors of 9 not multiples