1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STALIN [3.7K]
2 years ago
13

What’s the answer to 22= b/2 -2

Mathematics
2 answers:
Hunter-Best [27]2 years ago
7 0

b would equal  48

_________________

lidiya [134]2 years ago
5 0
22 = b/2 -2
22 + 2 = b/2
24 = b/2
b = 24 x 2 = 48
b = 48
You might be interested in
m∠AOB = 6x + 5, m∠BOC = 4x - 2, m∠AOC = 8x + 21
AnnZ [28]
The sum of angle AOB and angle BOC is equal tot he angle of AOC so

6x+5 +4x-2 = 8x+21

10x+3=8x+21

Subtract three and 8x from both sides

2x=18

Divide by two

x=9

Hope this helped!
6 0
3 years ago
Enter number as an integer or decimal.
Strike441 [17]

Answer:

x

Step-by-step explanation:

30-4x>6x-10

Adding 10 to both sides.

10+30-4x>6x-10+10

40-4x>6x

Adding 4x to both sides.

4x+40-4x>6x+4x

40>10x

Dividing both sides by 10.

\frac{40}{10}>\frac{10x}{10}

4>x

∴ x

3 0
3 years ago
Use the list below to find the upper quartile. 27, 5, 11, 13, 10, 8, 14, 18, 7
Alinara [238K]

Find the  median first. The middle of all the numbers.

5, 7, 8, 10, 11, 13, 14, 18, 27

11 is the median.

Then find the median of the upper quartile.

The upper quartile consists of numbers...

5, 7, 8, 10

Since it is an even set of numbers add the two in the middle and divided by two. So 7 plus 8=  15/2.

7.5 is your upper quartile.

4 0
3 years ago
Read 2 more answers
Help can some one do number 10 please
marissa [1.9K]
Download Socratic it'll do everything
6 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Other questions:
  • You want to buy a pet iguana. You already have $12 and plan to save $9 per week. If w represent the number of weeks until you ha
    5·1 answer
  • You draw 2 cards from a deck. What’s the probability that one is red and the other is black
    8·1 answer
  • If augustin has 1/4 as many cards as mateo.Mateo has 1/2 as many cards as amaro .Who has the most cards?
    9·1 answer
  • Find the number of permutations in the word circus.
    13·2 answers
  • A plane left Chicago at 8:00am. At 1:P.M, the plane landed in Los Angeles, which is 1500 miles away. What was the average speed
    13·1 answer
  • Find the value of x in the given
    10·1 answer
  • Which of the following has a growth rate of 60%?<br><br> (no links please)
    11·1 answer
  • The chart below shows the distribution of weeds in a yard.
    14·2 answers
  • (2m - 5m^3 ) - (5m + 3m^3- 7m^4 ) + (8 - 3m^3- 5m^4+ 4m)
    10·2 answers
  • Find the value of X to the nearest tenth
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!