1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
2 years ago
11

Which object would weigh closest to 5 pounds A.Bee B. Flour C.Hat D.Football​

Mathematics
1 answer:
kodGreya [7K]2 years ago
5 0

I believe the answer is football.

You might be interested in
The length of each side of a square was increased by 6 inches, so the
marusya05 [52]
Each side was 28 inches
4 0
3 years ago
What is the area of the sector bound by the center of the circle and arc CD in the circle below? Circle A is shown with a radius
kotykmax [81]
Area = 45/360 (pi)(15)^2
88.31
4 0
3 years ago
Read 2 more answers
1.) What are the zeros of the polynomial? f(x)=x^4-x^3-16x^2+4x+48.
Lerok [7]

Answer:

3.) \displaystyle [x - 2][x^2 + 2][x + 4]

2.) \displaystyle 2\:complex\:solutions → x^2 + 3x + 6 >> -\frac{3 - i\sqrt{15}}{2}, -\frac{3 + i\sqrt{15}}{2}

1.) \displaystyle 4, -3, 2, and\:-2

Step-by-step explanation:

3.) By the Rational Root Theorem, we would take the Least Common Divisor [LCD] between the leading coefficient of 1, and the initial value of −16, which is 1, but we will take 2 since it is the <em>fourth root</em> of 16; so this automatically makes our first factor of \displaystyle x - 2.Next, since the factor\divisor is in the form of \displaystyle x - c, use what is called Synthetic Division. Remember, in this formula, −c gives you the OPPOSITE terms of what they really are, so do not forget it. Anyway, here is how it is done:

2| 1 2 −6 4 −16

↓ 2 8 4 16

__________________

1 4 2 8 0 → \displaystyle x^3 + 4x^2 + 2x + 8

You start by placing the <em>c</em> in the top left corner, then list all the coefficients of your dividend [x⁴ + 2x³ - 6x² + 4x - 16]. You bring down the original term closest to <em>c</em> then begin your multiplication. Now depending on what symbol your result is tells you whether the next step is to subtract or add, then you continue this process starting with multiplication all the way up until you reach the end. Now, when the last term is 0, that means you have no remainder. Finally, your quotient is one degree less than your dividend, so that 1 in your quotient can be an x³, the 4x² follows right behind it, bringing 2x right up against it, and bringing up the rear, 8, giving you the quotient of \displaystyle x^3 + 4x^2 + 2x + 8.

However, we are not finished yet. This is our first quotient. The next step, while still using the Rational Root Theorem with our first quotient, is to take the Least Common Divisor [LCD] of the leading coefficient of 1, and the initial value of 8, which is −4, so this makes our next factor of \displaystyle x + 4.Then again, we use Synthetic Division because \displaystyle x + 4is in the form of \displaystyle x - c:

−4| 1 4 2 8

↓ −4 0 −8

_____________

1 0 2 0 → \displaystyle x^2 + 2

So altogether, we have our four factors of \displaystyle [x^2 + 2][x + 4][x - 2].

__________________________________________________________

2.) By the Rational Root Theorem again, this time, we will take −1, since the leading coefficient & variable\degree and the initial value do not share any common divisors other than the <em>special</em><em> </em><em>number</em> of 1, and it does not matter which integer of 1 you take first. This gives a factor of \displaystyle x + 1.Then start up Synthetic Division again:

−1| 1 3 5 −3 −6

↓ −1 −2 −3 6

__________________

1 2 3 −6 0 → \displaystyle x^3 + 2x^2 + 3x - 6

Now we take the other integer of 1 to get the other factor of \displaystyle x - 1,then repeat the process of Synthetic Division:

1| 1 2 3 −6

↓ 1 3 6

_____________

1 3 6 0 → \displaystyle x^2 + 3x + 6

So altogether, we have our three factors of \displaystyle [x - 1][x^2 + 3x + 6][x + 1].

Hold it now! Notice that \displaystyle x^2 + 3x + 6is unfactorable. Therefore, we have to apply the Quadratic Formula to get our two complex solutions, \displaystyle a + bi[or zeros in this matter]:

\displaystyle -b ± \frac{\sqrt{b^2 - 4ac}}{2a} = x \\ \\ -3 ± \frac{\sqrt{3^2 - 4[1][6]}}{2[1]} = x \\ \\ -3 ± \frac{\sqrt{9 - 24}}{2} = x \\ \\ -3 ± \frac{\sqrt{-15}}{2} = x \\ \\ -3 ± i\frac{\sqrt{15}}{2} = x \\ \\ -\frac{3 - i\sqrt{15}}{2}, -\frac{3 + i\sqrt{15}}{2} = x

__________________________________________________________

1.) By the Rational Root Theorem one more time, this time, we will take 4 since the initial value is 48 and that 4 is the root of the polynomial. This gives our automatic factor of \displaystyle x - 4.Then start up Synthetic Division again:

4| 1 −1 −16 4 48

↓ 4 12 −16 −48

___________________

1 3 −4 −12 0 → \displaystyle x^3 + 3x^2 - 4x - 12

We can then take −3 since it is a root of this polynomial, giving us the factor of \displaystyle x + 3:

−3| 1 3 −4 −12

↓ −3 0 12

_______________

1 0 −4 0 → \displaystyle x^2 - 4 >> [x - 2][x + 2]

So altogether, we have our four factors of \displaystyle [x - 2][x + 3][x + 2][x - 4],and when set to equal zero, you will get \displaystyle 4, -3, 2, and\:-2.

I am delighted to assist you anytime.

3 0
3 years ago
The current population of a threatened animal species is 1.2 million, but it is declining with a half-life of 20 years. How many
Allisa [31]
Rate:\frac{1,200,000}{20}
Unit\ Rate:\frac{60,000}{2} = 30,000

25\ Years:750,000
55\ Years:1,650,000

6 0
3 years ago
The line passes through the points 1,4
evablogger [386]
If you're looking for the gradient then it will be y=4x otherwise please write the question! 
7 0
3 years ago
Other questions:
  • What can you say about the marked angles?
    6·1 answer
  • What is the slope of the line represented by the equation y=x/4-€
    5·1 answer
  • 1. Write an expression for the operation described below.<br> w minus 3
    10·1 answer
  • What is the measure of angle A?<br>what is the measure of angle B?​
    8·1 answer
  • Given the formula I=prt, if p = 8000, r = 0.6, and t = 1, what is the value of "I"?
    9·2 answers
  • Can someone answer this for me?
    6·2 answers
  • Use the ranges to explain why the secant function can attain the value of 2 but the cosine function cannot.
    14·1 answer
  • Question 2
    12·1 answer
  • UNIT 2 lesson 12 polygons and quadrilaterals unit test part one!!!!!!!
    8·1 answer
  • Suppose g(x)=f(x-3)-4. which statement best compares the graph of g(x) with the graph of f(x)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!