The Schwarzschild radius of the black hole depends on its mass
The Schwarzschild radius of this supermassive black holeis 0.091 AU
<h3 /><h3>How to determine the Schwarzschild radius?</h3>
The Schwarzschild radius (r) is calculated using:
![r_s = \frac{2GM}{c^2}](https://tex.z-dn.net/?f=r_s%20%3D%20%5Cfrac%7B2GM%7D%7Bc%5E2%7D)
Where:
G = Gravitational constant = 6.67408 × 10-11 m3 kg-1 s-2
M = Mass of the object = 4.6 x 10^6 solar masses
c = Speed of light = 299792458 m / s
Express the mass in Kg
M = 4.6 x 10^6 * 9.2 * 10^18 = 9.15 * 10^36 kg
Substitute the above values in the equation
![r_s = \frac{2 * 6.67408 * 10^{-11} * 9.15 * 10^36}{299792458 ^2}](https://tex.z-dn.net/?f=r_s%20%3D%20%5Cfrac%7B2%20%2A%206.67408%20%2A%2010%5E%7B-11%7D%20%2A%209.15%20%2A%2010%5E36%7D%7B299792458%20%5E2%7D)
Evaluate the expression
m
Express as km
km
Expressas AU
![r_s = \frac{13589425.3396}{1.5 * 10^8}](https://tex.z-dn.net/?f=r_s%20%3D%20%5Cfrac%7B13589425.3396%7D%7B1.5%20%2A%2010%5E8%7D)
Evaluate the quotient
![r_s = 0.09059616893](https://tex.z-dn.net/?f=r_s%20%3D%200.09059616893)
Approximate
![r_s = 0.091\ AU](https://tex.z-dn.net/?f=r_s%20%3D%200.091%5C%20AU)
Hence, the Schwarzschild radius of this supermassive black holeis 0.091 AU
Read more about gravitational radius at:
brainly.com/question/4208016