1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vagabundo [1.1K]
3 years ago
6

If x represents the molar solubility of b a 3 ( p o 4 ) 2 , what is the correct equation for the k s p ?

Mathematics
1 answer:
AnnyKZ [126]3 years ago
5 0

The molar solubility of Ba₃(PO₄)₂ is its concentration of pure substance

The correct equation for the ksp is Ksp = 6x⁵

<h3>How to determine the equation of ksp?</h3>

Start by writing the reaction for the solution of Barium phosphate

Ba₃(PO₄)₂  ⇌3Ba²⁺ +2PO₄³⁻

Next, we make an ICE chart

Let "x" be the molar solubility of Barium phosphate

          Ba₃(PO₄)₂(s)  ⇌3Ba²⁺ +2PO₄³⁻

I                                 0                  0

C                              +3x               +2x

E                                3x³                 2x²

Lastly, we write the expression for the solubility product constant (Ksp)

This is represented as:

Ksp = [3Ba²⁺] × [2PO₄³⁻]²

Ksp = 3x³ × 2x²

Evaluate the product

Ksp = 6x⁵

Hence, the correct equation for the ksp is Ksp = 6x⁵

Read more about molar solubility at:

brainly.com/question/9732001

You might be interested in
How do i solve a triangles area​
shusha [124]

Answer:

Area = 1/2 Base x height

Step-by-step explanation:

To find the area of a triangle, multiply the base of the height and then divide by 2. The division by 2 comes from the fact that a parallelogram can be divided into two triangles.

6 0
4 years ago
Solve this for 20 points be fast!!<br><br> Don’t mind the scribes
puteri [66]

Answer:

One cubed shape block volume = 0.125 cubic feet

Step-by-step explanation:

Since the edge length of each block is 1/5 the edge length of the storage container, we do this:

1/5 x 2.5 = 0.5

Now we know that the edge length of each block is 0.5 feet. To find the volume of it, we do this:

0.5^3 = 0.125

The volume of one cubed shape block is 0.125 cubic feet.

4 0
3 years ago
2x+5 is greater than 50 Please help im on the phone with my teacher
Viktor [21]
Well idk what you are solving for but if it is x , the answer is x is greater than 45/2

5 0
3 years ago
Help me evaluate3p/q when p=2 and q=6
krok68 [10]
\frac{3p}{q} = \frac{3(2)}{6} = \frac{6}{6} = 1
8 0
3 years ago
Read 2 more answers
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Other questions:
  • The area of a rectangle mirror is 11 11/16 Square feet. The width of the mirror is 2 3/4 feet. If there is a 5 foot tall space o
    10·1 answer
  • Find the y-intercept of the line y = 6x + 174
    10·1 answer
  • Combining like terms 4-6r+3r
    11·2 answers
  • How many liters are in a milliliter calculator?
    8·1 answer
  • Find the surface area of the regular pyramid shown to the nearest whole number. <br><br> Thank you.
    15·1 answer
  • Number eight please
    6·1 answer
  • (s+1) /4=4/8 solve the proportion
    15·2 answers
  • Fractions that are less than 1 and fractions that is greater than 1
    14·1 answer
  • A famous basketball player scored 97 points in a high scool game, breaking a national record. She made 43 more 2-point baskets t
    8·1 answer
  • Solve the system by graphing.<br><br> 3x+8y=16<br><br> 3x+8y=-64
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!