308 slices would be sold.
38*8= 304, plus 4 slices in half a pizza makes 308 slices.
1 42.5* and 3 95*, the sum of all the angles =360*, so Angle J = L and M=K, Angle 1 =M/2
Answer:
E, F, B, and C
Step-by-step explanation:
Im just learning about these kind of things and this is a challenging question not going to lie.
I chose B because expanding and building more factories is apart of economics. You need more land to expand your business, but this will also affect the economy.
C seems like a good answer also because writing about economic trends is an important thing in economics. This also helps others learn out the economy and what not to do and what to do to help make our environment a better place.
I chose E because starting a business is apart of economics. A lot of business are apart of economic systems and help money come into our economy.
F is a good answer for me because the U.S government has been apart of America's economic system for a long time just like they are involved with everything else. The government is a big help and a big part of our economy, especially for america.
3x _> 3.0 - 2.4
= 3x _> 3/5
= 1/5
Answer:
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright)
i.e after the first year ;
there 1344 members in the first age class
84 members for the second age class; and
28 members for the third age class
Step-by-step explanation:
We can deduce that the age distribution vector x represents the number of population members for each age class; Given that in each class of age there are 112 members present.
The current age distribution vector is as follows:
![x = \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right] \left[\begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 0 \ \leq age \leq 2 }\\{0 \ \leq age \leq 3}\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%200%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright%5D)
Also , the age transition matrix is as follows:
![L = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D)
After 1 year ; the age distribution vector will be :
![x_2 =Lx_1 = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right] \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3DLx_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%203%7D%5Cend%7Barray%7D%5Cright)