1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darina [25.2K]
2 years ago
15

Find the perimeter of each figure. 6 cm 2 cm 2 cm 6 cm

Mathematics
1 answer:
stepan [7]2 years ago
8 0

Answer:

Assuming that you are listing the length of each side of the figure, we can add the values together.  The perimeter is 16 cm.

Step-by-step explanation:

6+2+2+6=16 cm

You might be interested in
The formula for finding the area of a triangle is A = 1/2bh. A triangle has height 12 in. and area 54in^2. What is the length of
KatRina [158]

Answer:

9in

Step-by-step explanation:

54 = 1/2(12*x)

54 = 6*x

x = 9

Check

12 x 9 = 108

108/2 = 54

8 0
2 years ago
What is the exact area of a circle with a diameter of 18 feet
marin [14]
A = π r^2
A = 9^2 <span>π
</span>A = 81<span>π 

if using </span>π = 3.14 then

A = 3.14 x 81 = 254.47 ft^2

answer: 81π ft^2 or 254.47 ft^2

hope that helps
6 0
3 years ago
Pls help!!!! i have eight more minutes to answer<br> eeeeeeeeee
Sati [7]
Answer: B) 16 units

Step-by-Step Explanation:

As we can observe from the graph,

Length (l) = 5 units
Breadth (b) = 3 units

Perimeter = 2(l + b)

Therefore,
= 2(l + b)
= 2(5 + 3)
= 2(8)
= 2 * 8
=> 16

Perimeter = 16 units
6 0
2 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
U know who this is meant for not u keep looking
RoseWind [281]

Answer:

lol okay

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • I need help asap please!
    11·1 answer
  • 3x+2y+2x+2=3x+2x+2y+2
    15·1 answer
  • The area of a trapezium is 34 cm and the length one of its parallel side is
    7·1 answer
  • PLEASE HELP ME ASAP!! I had trouble with this and it is now over due
    9·1 answer
  • In a square with side length of 6, what is the distance between the center of the square and the center of the largest equilater
    6·1 answer
  • Solve for q<br> 7/3 = q + 2/3
    14·2 answers
  • I GIVEEEEE BRAINLILSET
    9·2 answers
  • Find the least common multiple (LCM) for the pair of<br> numbers 6 and 18.
    10·1 answer
  • What is the surface area of the cylinder with height 4 in and radius 4 in? Round your answer to the nearest thousandth.
    8·1 answer
  • Help me asap!! PLS I RLLY NEED IT
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!