Answer: Parallel: y=-2/7x-2 1/7 Perpendicular: y=7/2x+13
Step-by-step explanation:
2x+7y=14
Subtract 2x from both sides.
7y=-2x+14
Divide both sides by 7 to isolate y.
y=-2/7x+2
Parallel:
Plug in x and y with same slope as the original.
-1=-2/7(-4)+b
Solve for b:
-1=8/7+b
-2 1/7=b
y=-2/7x-2 1/7
Perpendicular:
Plug in x and y with the negative inverse of the original slope.
-1=7/2(-4)+b
Solve for b.
-1=-28/2+b
-1=-14+b
13=b
y=7/2x+13
Answer:

Step-by-step explanation:
● formulas of valume = πr²h
- 22/7×12×12×38•4 ft
- 3•14×144×38•4 ft
- 452•16×38•4 ft
- 17362•944 ft³
● now nearest to the number
- 17262•944 ft³ nearest tenth is 17360ft³.
Hope it's helps you
Let h represent the height of the trapezoid, the perpendicular distance between AB and DC. Then the area of the trapezoid is
Area = (1/2)(AB + DC)·h
We are given a relationship between AB and DC, so we can write
Area = (1/2)(AB + AB/4)·h = (5/8)AB·h
The given dimensions let us determine the area of ∆BCE to be
Area ∆BCE = (1/2)(5 cm)(12 cm) = 30 cm²
The total area of the trapezoid is also the sum of the areas ...
Area = Area ∆BCE + Area ∆ABE + Area ∆DCE
Since AE = 1/3(AD), the perpendicular distance from E to AB will be h/3. The areas of the two smaller triangles can be computed as
Area ∆ABE = (1/2)(AB)·h/3 = (1/6)AB·h
Area ∆DCE = (1/2)(DC)·(2/3)h = (1/2)(AB/4)·(2/3)h = (1/12)AB·h
Putting all of the above into the equation for the total area of the trapezoid, we have
Area = (5/8)AB·h = 30 cm² + (1/6)AB·h + (1/12)AB·h
(5/8 -1/6 -1/12)AB·h = 30 cm²
AB·h = (30 cm²)/(3/8) = 80 cm²
Then the area of the trapezoid is
Area = (5/8)AB·h = (5/8)·80 cm² = 50 cm²
Answer:
85 feet
Step-by-step explanation:
P=2L+2W where L is the length and W is the width. If the length is 50 feet longer than the width, we can write the expression L=50+W. Substituting into P=2L+2W we get P=2(50+W)+2W=100+2W+2W=100+4W. Since P=300, we can say 300=100+4W. Subtracting 100 from each side we get 200=4W. Dividing each side by 4 gives 50=W. Substituting this into L=50+W gives L=50+35=85. The length is 85 feet.
<h2>
Answer:</h2>
The ratio of the area of region R to the area of region S is:

<h2>
Step-by-step explanation:</h2>
The sides of R are in the ratio : 2:3
Let the length of R be: 2x
and the width of R be: 3x
i.e. The perimeter of R is given by:

( Since, the perimeter of a rectangle with length L and breadth or width B is given by:
)
Hence, we get:

i.e.

Also, let " s " denote the side of the square region.
We know that the perimeter of a square with side " s " is given by:

Now, it is given that:
The perimeters of square region S and rectangular region R are equal.
i.e.

Now, we know that the area of a square is given by:

and

Hence, we get:

and

i.e.

Hence,
Ratio of the area of region R to the area of region S is:
