Answer:
-0.1, 0, 0.8, 1.2, 1.6
Step-by-step explanation:
Answer:
El espesor de un chip es de 0.12mm
Y el diámetro de un átomo de cobre, mide aprox:
0.00000000133 m
Queremos saber cuantos átomos deberemos alinear de tal forma que la "cadena" de átomos de cobre mida 0.12mm
Eso es equivalente a ver cuantas veces entra 0.00000000133 m en 0.12mm
Primero, escribamos ambos valores en las mismas unidades, sabiendo que:
1m = 1000mm
Podemos reescribir:
0.00000000133m = 0.00000000133*(1000 mm) = 0.00000133mm
Entonces tenemos que ver cuantas veces entra 0.00000133mm en 0.12mm
Esto sera igual al cociente entre 0.12mm y 0.00000133mm, esto es:
N = (0.12mm)/(0.00000133mm) = 90,225.6
Redondeamos al próximo número entero:
N = 90,226
Esa es la cantidad de átomos que se necesitan.
Answer:
OE. 400
Step-by-step explanation:
.25*400=100
(If you don't believe me, do it out.)
<em><u>Hope this helps!!!</u></em>
<em><u>Brady</u></em>
The patient should drink 3000 milliliter per day
<em><u>Solution:</u></em>
Given that a patient is told to force fluids to 3 liter per day
To find: Amount the patient should drink in milliliter
Use the conversion factor,
1 liter = 1000 milliliter
Now we have to find the amount the patient she drink in milliliter
Amount patient drinks in liter = 3 liter per day
Therefore, convert 3 liter to milliliter
3 liter = 1000 x 3 milliliter = 3000 milliliter
Thus the patient should drink 3000 milliliter per day
Answer:
x ∈ (-∞, -1) ∪ (1, ∞)
Step-by-step explanation:
To solve this problem we must factor the expression that is shown in the denominator of the inequality.
So, we have:

So the roots are:

Therefore we can write the expression in the following way:

Now the expression is as follows:

Now we use the study of signs to solve this inequality.
We have 3 roots for the polynomials that make up the expression:

We know that the first two are not allowed because they make the denominator zero.
Observe the attached image.
Note that:
when 
when 
and
is always 
Finally after the study of signs we can reach the conclusion that:
x ∈ (-∞, -1) ∪ (1, 2] ∪ [2, ∞)
This is the same as
x ∈ (-∞, -1) ∪ (1, ∞)