1.
If no changes are made, the school has a revenue of :
625*400$/student=250,000$
2.
Assume that the school decides to reduce n*20$.
This means that there will be an increase of 50n students.
Thus there are 625 + 50n students, each paying 400-20n dollars.
The revenue is:
(625 + 50n)*(400-20n)=12.5(50+n)*20(20-n)=250(n+50)(20-n)
3.
check the options that we have,
a fee of $380 means that n=1, thus
250(n+50)(20-n)=250(1+50)(20-1)=242,250 ($)
a fee of $320 means that n=4, thus
250(n+50)(20-n)=250(4+50)(20-4)=216,000 ($)
the other options cannot be considered since neither 400-275, nor 400-325 are multiples of 20.
Conclusion, neither of the possible choices should be applied, since they will reduce the revenue.
Answer:
The equation has no real solutions. It has 2 imaginary, or complex solutions.
Step-by-step explanation:
Answer:
x = 2
Step-by-step explanation:
The triangle is reflected across the circle meaning it should be the same on both sides.
<h3>Answer:</h3>
Yes, ΔPʹQʹRʹ is a reflection of ΔPQR over the x-axis
<h3>Explanation:</h3>
The problem statement tells you the transformation is ...
... (x, y) → (x, -y)
Consider the two points (0, 1) and (0, -1). These points are chosen for your consideration because their y-coordinates have opposite signs—just like the points of the transformation above. They are equidistant from the x-axis, one above, and one below. Each is a <em>reflection</em> of the other across the x-axis.
Along with translation and rotation, <em>reflection</em> is a transformation that <em>does not change any distance or angle measures</em>. (That is why these transformations are all called "rigid" transformations: the size and shape of the transformed object do not change.)
An object that has the same length and angle measures before and after transformation <em>is congruent</em> to its transformed self.
So, ... ∆P'Q'R' is a reflection of ∆PQR over the x-axis, and is congruent to ∆PQR.
Unproportional. 60/10=6
90/20=4.5
120/30=4
150/40=3.75