Answer:
hello your question has some missing values attached below is the complete question with the missing values
answer :
a) 0.083 secs
b) 0.33 secs
c) 3e^-4/3
Explanation:
Given that
g = 32 ft/s^2 , spring constant ( k ) = 2 Ib/ft
initial displacement = 1 ft above equilibrium
mass = weight / g = 4/32 = 1/8
damping force = instanteous velocity hence β = 1
a<u>)Calculate the time at which the mass passes through the equilibrium position.</u>
time mass passes through equilibrium = 1/12 seconds = 0.083
<u>b) Calculate the time at which the mass attains its extreme displacement </u>
time when mass attains extreme displacement = 1/3 seconds = 0.33 secs
<u>c) What is the position of the mass at this instant</u>
position = 3e^-4/3
attached below is the detailed solution to the given problem
Answer:
B is the best answer for the question
I literally looked everywhere for the answer, and I still found nothing. I hope you get it right. Sorry.
Answer:

Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum
g is the acceleration of gravity
From this equation we can write

Taking the square of this equation, we get:

So we see that
is proportional to L and inversely proportional to g. So, we can write:

So the only correct option is

Answer
It should be A and C
Explanation:
because oxygen is number 8 in the periodic table of elements and has a atomic weight of 15.999 you use those numbers to figure out what is true between those.
The 8 for oxygen goes for the number of electrons and proton and to find neutrons u round the 15.999 up which now make it 16 and subtract it by the 8 now you have 8 protons, 8 neutrons, and 8 electrons