Answer:
two places where thermal conduction takes place are gases and liquids, conduction is due to collisions of molecules during their random motion. Hence, the correct option is (C). Note: Though, the particle distances between gases are much more in comparison to solids and liquids, conduction slowly occurs in gases also
Explanation:
i hope it will help you
Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.
A solar eclipse will be visible over a wide area of the north polar region
on Friday, March 20.
England is not in the path of totality, but it's close enough so that a large
part of the sun will be covered, and it will be a spectacular sight.
For Londoners, the eclipse begins Friday morning at 8:25 AM,when the
moon just begins to eat away at the sun's edge. It advances slowly, as more
and more of the sun disappears, and reaches maximum at 9:31 AM. Then
the obscured part of the sun begins to shrink, and the complete disk is
restored by the end of the eclipse at 10:41AM, after a period of 2 hours
16 minutes during which part of the sun appears to be missing.
The catch in observing the eclipse is:
<em><u>YOU MUST NOT LOOK AT THE SUN</u></em>.
Staring at the sun for a period of time can cause permanent damage to
your vision, even though <em><u>you don't feel it while it's happening</u></em>.
This is not a useful place to try and give you complete instructions or
suggestions for observing the sun over a period of hours. Please look
in your local newspaper, or search online for phrases like "safe eclipse
viewing".
Answer:
The heat transferred through the wall that day is 13728 BTUs
Explanation:
Here, we have the area of the wall given as
Area of wall = 2 × Length × Height + 2 × Width × Height
Length = 15 feet
Width = 11 Feet and
Height = 9 feet
Therefore, the area = 2×15×9 + 2×11×9 = 468 ft²
Temperature difference is given by
Average outside temperature - Wall temperature = 40 - 18 = 22 °F
Therefore the heat transferred through the wall that day (24 hours) at 18 sq.ft. hr/BTU is given by;
468 × 22 × 24/18 = 13728 = 13728 BTUs.
A high electromagnetic wave has short, very fast, frequent waves.
a low electromagnetic wave has long, very slow, infrequent waves.
hope this helps! pls mark brainliest!