Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
Answer:
U = - G m M / r
Explanation:
The gravitational potential energy is given by the expression
U = - G m₁ m₂ / r
dodne G is the gravitational cosntnate (G = 6.67 10⁻¹¹¹), m and m are the mass of the bodies involved
subtype the given values
U = - G m M / r
Im not 100% on these but i can try
1. A compound is made up of elements and their different atoms
2.
A. salt- compound (NaCl) is two elements Na (sodium) and Cl (chloride?)
B. Nitrogen- element its on the periodic table
C. Helium- element its on the periodic table
D. Water- compound (H2O) two elements hydrogen and oxygen
3. element, compound, compound, element
Hope this helps
Answer:
Magnitude = 3.64 ×
စ = 43.9°
Explanation:
given data
ship to travel = 1.7 × kilometers
turn = 70°
travel an additional = 2.7 × kilometers
solution
we will consider here
Px = 1.7 ×
Py = 0
Qx =2.7 × cos(70)
Qy= 2.7 × sin(70)
so that
Hx = Px + Qx ............1
Hx = 2.62 ×
and
Hy = Py + Qy ..........2
Hy = 2.53 ×
so Magnitude =
Magnitude = 3.64 ×
so direction will be
tan စ = Hy ÷ Hx ......................3
tan စ =
tan စ = 0.9656
စ = 43.9°