Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Answer:
<em><u>172,000 second </u></em>
<em><u>I'M</u></em><em><u> </u></em><em><u>NOT</u></em><em><u> </u></em><em><u>SURE</u></em><em><u> </u></em><em><u>THAT</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>RIGHT</u></em><em><u> </u></em><em><u>OR</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u> </u></em><em><u>IF</u></em><em><u> </u></em><em><u>IT'S</u></em><em><u> </u></em><em><u>WRONG</u></em><em><u> </u></em><em><u>THEN</u></em><em><u> </u></em><em><u>SORRY</u></em><em><u> </u></em>
We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa
In 16 times
KE= o.5 m times V squared