1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
7

A 1100 kg car rounds a curve of radius 68 m banked at an angle of 16 degrees. If the car is traveling at 95 km/h, will a frictio

n force be required? If so, how much and in what direction?
Physics
1 answer:
Mariulka [41]3 years ago
5 0

Answer:

Yes. Towards the center. 8210 N.

Explanation:

Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.

In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.

The net force is equal to F = \frac{mv^2}{R} = \frac{1100\times (26.3)^2}{68} = 1.1\times 10^4~N

Note that 95 km/h is equal to 26.3 m/s.

This is the centripetal force and equal to the x-component of the applied force.

F = mg\sin(16) = 1100(9.8)\sin(16) = 2.97\times10^3

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.

The amount of the friction force should be 8.21\times 10^3~N

Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.

You might be interested in
Juan is making ice tea. When he adds ice to the tea, why does the tea cool down?​
Tresset [83]

Answer: because the ice was cold, and it melted in the tea. So the tea is now cooler.

Explanation:

4 0
2 years ago
A body travels 80 meters in 8 seconds <br> at a steady speed calculate it's average speed<br>​
iVinArrow [24]

Explanation:

avg spd = total distance/total time

=80/8=10m/s

7 0
3 years ago
The water in a river flows uniformly at a constant speed of 2.50 m/s between parallel banks 80.0 m apart. You are to deliver a p
NISA [10]

Answer:

a)  The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) 133.33 m

c) 53.13°

d) 106.67 m

Explanation:

a) The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) velocity = distance * time

Let the velocity of the swimmer be v_{s} = 1.5 m/s

The separation of the two sides of the river, d = 80 m

The time taken by the swimmer to get to the other end of the river bank,

t = \frac{d}{v_{s} }

t = 80/1.5

t = 53.33 s

The swimmer will be carried downstream by the river through a distance, s

Let the velocity of the river be v_{r} = 2.5 m/s

S = v_{r} t

S = 53.33 * 2.5

S = 133.33 m

c) To minimize the distance traveled by the swimmer, his resultant velocity must be perpendicular to the velocity of the swimmer relative to water

That is ,

cos \theta = \frac{v_{s} }{v_{r} } \\cos \theta = 1.5/2.5\\cos \theta = 0.6\\\theta = cos^{-1} 0.6\\\theta = 53.13^{0}

d) Downstream velocity of the swimmer, v_{y} = v_{s} sin \theta\\

v_{y} = 1.5 sin 53.13\\v_{y} = 1.2 m/s

The vertical displacement is given by, y = v_{y} t

80 = 1.2 t

t = 80/1.2

t = 66.67 s

the horizontal speed,

v_{x} = 2.5 - 1.5cos53.13\\v_{x} = 1.6 m/s

The downstream horizontal distance of the swimmer, x = v_{x} t

x = 1.6 * 66.67

x = 106.67 m

7 0
3 years ago
The site from which an airplane takes off is the origin. The X axis points east, the y axis points straight up. The position and
Contact [7]

Answer:

d = 3.5*10^4 m

Explanation:

In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:

\vec{r}=(1.21*10^3\hat{i}+3.45*10^4\hat{j})m

The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:

d=\sqrt{(x-x_o)^2+(y-y_o)^2}   (1)

where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):

d=\sqrt{(1.12*10^3-0)^2+(3.45*10^4-0)^2}=3.45*10^4m

hence, the displacement of the airplane is 3.45*10^4 m

6 0
3 years ago
HURRY Which change is an example of transforming potential energy to kinetic energy
Jet001 [13]

Answer:

C.  changing nuclear energy to radiant energy

Explanation:

Nuclear energy takes atoms in their potential state, split them (fission) or fuse them (fusion)  creating chain reactions of radiant energy.  Most nuclear electrical power plants use fission, radiant energy heats water making steam to spin turbines.

Or think of the atom bomb.  Definitely potential energy until the fuse starts detonation and chain reactions.  The radiant kinetic energy and shock waves were horrendous.

3 0
3 years ago
Read 2 more answers
Other questions:
  • A certain material has a high melting point and is malleable and shiny. It is most likely a _____.
    6·2 answers
  • The prevailing winds that form in hadley cells are ?
    11·2 answers
  • Jenna can run 9 km in 1 hour. If she runs at that speed for 30 minutes, how far will she go? *
    8·1 answer
  • A graph of velocity versus time (velocity displayed in m/s and time in seconds) displays a
    6·1 answer
  • If a ball is thrown straight up, where is its acceleration the<br> greatest
    15·1 answer
  • A ball of mass 2 kg is moving with a speed of +6 m/s directly towards
    10·1 answer
  • A car mass 600kg starts from rest moving uniform acceleration 0.2 m/s^2 after 60 seconds collides with stationary pick up van of
    10·1 answer
  • A 600kg car is at rest, and then it accelerates to 5 m/s.
    5·1 answer
  • A person weighs 60 kg. The area under the foot of the person is 150 cm2. Find the pressure exerted on the ground by the person.
    8·1 answer
  • There is a small hole of radius r in a hollow sphere, which is immersed in a liquid. Upto what maximum depth it can be immersed
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!