Adding to the solutions and points gotten, we can further say that: Opposite angles of the parallelogram are congruent, by the theorem of Side Angle side (SAS) (i.e angle AEB = CED )
<h3>Meaning of Congruence</h3>
Congruence can be defined as a term used to depict a state of two object being equal, in harmony, and in agreement.
The congruence of a shaped is verified by some laws which they both must satisfy.
In conclusion, the triangle is congruent with the fact stated in the question and the additional fact added above.
Learn more about congruence: brainly.com/question/3168048
#SPJ1
In this case we know the three sides of the triangle, then this is a SSS triangle (Side Side Side). To solve this case, first we must use the Law of Cosines, applied to the opposite side to the angle we want to find.
We want to find angle W, and its opposite side is XV, then we apply the Law of Cosines to the side XV:
XV^2=XW^2+WV^2-2(XW)(WV)cos W
Replacing the known values:
116^2=96^2+89^2-2(96)(89)cos W
Solving for W
13,456=9,216+7,921-17,088 cos W
13,456=17,137-17,088 cos W
13,456-17,137=17,137-17,088 cos W-17,137
-3,681=-17,088 cos W
(-3,681)/(-17,088)=(-17,088 cos W)/(-17,088)
0.215414326=cos W
cos W = 0.215414326
Solving for W:
W= cos^(-1) 0.215414326
Using the calculator:
W=77.56016397°
Rounded to one decimal place:
W=77.6°
Answer: Third option 77.6°
Us the app desmos it’s good
X and Y are supplementary, that means X + Y = 180.
But we have, X = Y +24, then
X + Y = Y + 24 + Y = 2Y + 24 = 180
Then
2Y = 156
Y = 78
Then X = 78 + 24 = 102.
is simply the difference of both amounts, but firstly let's convert the mixed fractions to improper, and subtract.
![\bf \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\\\ \stackrel{mixed}{6\frac{7}{16}}\implies \cfrac{6\cdot 16+7}{16}\implies \stackrel{improper}{\cfrac{103}{16}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{Jessie}{\cfrac{103}{16}}-\stackrel{Bryce}{\cfrac{9}{2}}\implies \stackrel{\textit{our LCD is 16}}{\cfrac{(1)103-(8)9}{16}}\implies \cfrac{103-72}{16}\implies \cfrac{31}{16}\implies 1\frac{15}{16}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B7%7D%7B16%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%2016%2B7%7D%7B16%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B103%7D%7B16%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cstackrel%7BJessie%7D%7B%5Ccfrac%7B103%7D%7B16%7D%7D-%5Cstackrel%7BBryce%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bour%20LCD%20is%2016%7D%7D%7B%5Ccfrac%7B%281%29103-%288%299%7D%7B16%7D%7D%5Cimplies%20%5Ccfrac%7B103-72%7D%7B16%7D%5Cimplies%20%5Ccfrac%7B31%7D%7B16%7D%5Cimplies%201%5Cfrac%7B15%7D%7B16%7D)