The strain energy stored in a linear spring is
SE = (1/2)*k*x²
where
k = the spring constant
x = the extension (or compression) of the spring
Given:
k = 470 N/m
x = 17.0 cm = 0.17 m
Therefore
SE = 0.5*(470 N/m)*(0.17 m)² = 6.7915 J
Answer: 6.8 J (nearest tenth)
Answer:
A
Explanation:
The slope of the graph has the units of vertical axis divided by horizontal axis. This means that the slope of a distance vs time graph is distance/time, or velocity.
Slope is calculated by "rise over run" so C is incorrect.
Since the slope represents velocity, a constant slope equates to a constant velocity, hence B is incorrect. Same reasoning for D being incorrect: if the slope is zero, the object is not moving.
Answer:
C. Overcome Friction
Explanation:
When using any machine usually those with moving parts, you may notice heat forming near the areas where most movement occurs. As friction continues, more energy is used up and released as heat. For that reason, the efficiency of a machine will forever be less than 100%
Answer:
The width of the slit is 0.167 mm
Explanation:
Wavelength of light, 
Distance from screen to slit, D = 88.5 cm = 0.885 m
The distance on the screen between the fifth order minimum and the central maximum is 1.61 cm, y = 1.61 cm = 0.0161 m
We need to find the width of the slit. The formula for the distance on the screen between the fifth order minimum and the central maximum is :

where
a = width of the slit


a = 0.000167 m

a = 0.167 mm
So, the width of the slit is 0.167 mm. Hence, this is the required solution.
Answer:
I believe the answer is d but I could be wrong not a 100% sure.