Answer:570.54 N
Explanation:
Given
mass of man=76 kg
![\theta =50^{\circ}](https://tex.z-dn.net/?f=%5Ctheta%20%3D50%5E%7B%5Ccirc%7D)
As man is standing over inclined building therefore
its weight has two components i.e. sin and cos component
Force perpendicular to inclined wall
![F=mgcos\theta =76\times 9.8\times \sin 50](https://tex.z-dn.net/?f=F%3Dmgcos%5Ctheta%20%3D76%5Ctimes%209.8%5Ctimes%20%5Csin%2050)
F=570.54 N
Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>