Answer:
If the height is in metres, the speed is 24.25m/s
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is being acted upon by an external force. This law is also called the law of inertia because it depends on mass.
<em>From the given question, we can </em><em>fill gaps </em><em>as follows;</em>
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Learn more about Newton's first law of motion here: brainly.com/question/10454047
Answer:
d = 100.8 ft
Explanation:
As we know that initial speed of the van is 40 miles then the stopping distance is given as 70 feet
here we know that

so here we have

now again if the speed is increased to 48 mph then let say the stopping distance is "d"
so we will have

now divide the above two equations


Convert 38 ft/s^2 to mi/h^2. Then we se the conversion factor > 1 mile = 5280 feet and 1 hour = 3600 seconds.
So now we show it > 
Then we have to use the formula of constant acceleration to determine the distance traveled by the car before it ended up stopping.
Which the formula for constant acceleration would be > 
The initial velocity is 50mi/h 
When it stops the final velocity is 
Since the given is deceleration it means the number we had gotten earlier would be a negative so a = -93272.27
Then we substitute the values in....

So we can say the car stopped at 0.0134 miles before it came to a stop but to express the distance traveled in feet we need to use the conversion factor of 1 mile = 5280 feet in otherwards > 
So this means that the car traveled in feet 70.8 ft before it came to a stop.