Answer:
C. 6 equilateral triangles
A.)81 b.)500 c.)18 d.)36 e.)150 f.)900 g.)64 h.)54 I.)48 j.)7 k.)343 l.)121 m.)324 n.)1000 o.)32 p.)360 q.)225 r.)242
35) that external angel is the 2 given angles added together (30 + 80 = dba)
36) same property (110 = 40 + x)
37) same property ( (x-20) + (3x-60) = 2x + 20)
40) I dont know either but I'm pretty sure that the type of angle that x is determines the triangle.
Answer:
Option B
The measure of angle b is 75°
Step-by-step explanation:
Method 1
we know that
In a inscribed quadrilateral, the opposite angles are supplementary
so
∠a+60°=180° ------> equation A
∠b+105°=180° -----> equation B
To find the measure of angle b solve the equation B
∠b+105°=180°
Subtract 105° both sides
∠b+105°-105°=180°-105°
∠b=75°
Method 2
see the attached figure with letters to better understand the problem
we know that
The inscribed angle measures half that of the arc comprising
so
∠105°=(1/2)[arc ADC]
arc ADC=2*105°=210°
<em><u>Find the measure of arc ABC</u></em>
we know that
arc ABC+arc ADC=360° -----> by complete circle
arc ABC=360°-210°=150°
<u><em>Find the measure of inscribed angle b</em></u>
∠b=(1/2)[arc ABC]
substitute
∠b=(1/2)[arc 150°]=75°