Answer:
4.342
Step-by-step explanation:
8.1 - 3.758 = 4.342
When you are trying to find the amount of difference between two values you subtract the value less than the other and there you go, the solution!
I hope it was as simple as that and that this helped!
Answer with Step-by-step explanation:
The given differential euation is
![\frac{dy}{dx}=(y-5)(y+5)\\\\\frac{dy}{(y-5)(y+5)}=dx\\\\(\frac{A}{y-5}+\frac{B}{y+5})dy=dx\\\\\frac{1}{100}\cdot (\frac{10}{y-5}-\frac{10}{y+5})dy=dx\\\\\frac{1}{100}\cdot \int (\frac{10}{y-5}-\frac{10}{y+5})dy=\int dx\\\\10[ln(y-5)-ln(y+5)]=100x+10c\\\\ln(\frac{y-5}{y+5})=10x+c\\\\\frac{y-5}{y+5}=ke^{10x}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%28y-5%29%28y%2B5%29%5C%5C%5C%5C%5Cfrac%7Bdy%7D%7B%28y-5%29%28y%2B5%29%7D%3Ddx%5C%5C%5C%5C%28%5Cfrac%7BA%7D%7By-5%7D%2B%5Cfrac%7BB%7D%7By%2B5%7D%29dy%3Ddx%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Ccdot%20%28%5Cfrac%7B10%7D%7By-5%7D-%5Cfrac%7B10%7D%7By%2B5%7D%29dy%3Ddx%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Ccdot%20%5Cint%20%28%5Cfrac%7B10%7D%7By-5%7D-%5Cfrac%7B10%7D%7By%2B5%7D%29dy%3D%5Cint%20dx%5C%5C%5C%5C10%5Bln%28y-5%29-ln%28y%2B5%29%5D%3D100x%2B10c%5C%5C%5C%5Cln%28%5Cfrac%7By-5%7D%7By%2B5%7D%29%3D10x%2Bc%5C%5C%5C%5C%5Cfrac%7By-5%7D%7By%2B5%7D%3Dke%5E%7B10x%7D)
where
'k' is constant of integration whose value is obtained by the given condition that y(2)=0\\

Thus the solution of the differential becomes

Answer:
Hey there!
8(x-2)+3=-61
8(x-2)=-64
x-2=-8
x=-6
Let me know if this helps :)
Answer:
12
Step-by-step explanation:
cuz if u put all the fives it takes up for it u would get 12 times five
Call (F) the age of the father and (J) the age of Julio
The F & J are related in this way: F=4J
Now you have a restriction in the form of inequality: The sum of both ages has to be greater or equal than 55.
Algebraically that is: F + J ≥ 55
You can substitute F with 4J to find the solution for J:
4J + J ≥ 55
5J ≥ 55
Now divide both sides by 5
5J/5 ≥ 55/5
J ≥ 11
That Imposes a lower boundary for the value of J of 11, meaning that the youngest age of Julio can be 11