Answer:
Step-by-step explanation:
<u>Slope intercept form:</u>
<u>Use two points from the graph:</u>
<u>The first point is the y-intercept: </u>
<u>Find the slope using the slope formula:</u>
- m = (y2 - y1)/(x2 - x1)
- m = (-9 - (-8))/3 = -1/3
<u>The equation is:</u>
Answer:
x = 122
Step-by-step explanation:
x = 122 because of alternate interior angles
The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and

The generalized equation of a parabola in the vertex form exists

Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
Answer: B
Negative a squared b and 5 a squared b
Step-by-step explanation:
Given that:
Negative a squared b + 6 a b minus 8 + 5 a squared b minus 6 a minus b. That is,
- a^2b + 6ab - 8 + 5a^b - 6a - b
Collecting the like term by rearranging the expression
5a^2b - a^2b + 6ab - 6a - b
The like terms in the expression above are
5a^2b - a^2b.
The correct option is B:
Negative a squared b and 5 a squared b or (-a^2b and 5a^b)