1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
10

What is the main difference between mechanical and electromagnetic waves jiskha

Physics
1 answer:
AlekseyPX3 years ago
5 0
The main difference between mechanical and electromagnetic waves is that electromagnetic waves are the propagation of the energy whereas the mechanical waves are the physical interaction of the waves due to the vibrations. 
You might be interested in
What is the bond between oxygen and hydrogen in nitric acid
Damm [24]

Answer:

The spectra are consistent with a structure in which the nitric acid forms a near-linear, 1.78 Å hydrogen bond to the oxygen of the water.

Explanation:

Hope this helps you

8 0
3 years ago
What effect does an unbalanced force have on an object?
PSYCHO15rus [73]

Answer:

An unbalanced force can change an object's motion. An unbalanced force acting on a still object could make the object start moving. An unbalanced force acting on a moving object could make the object change direction, change speed, or stop moving.

6 0
3 years ago
A parachutist bails out and freely falls 63 m. Then the parachute opens, and thereafter she decelerates at 1.5 m/s2. She reaches
yaroslaw [1]

Answer:

(a) The parachutist spent 24.84 secs in air

(b) The height the fall begins is 472 m

Explanation:

Here is the complete question:

A parachutist bails out and freely falls 63 m. Then the parachute opens, and thereafter she decelerates at 1.5 m/s2. She reaches the ground with a speed of 3.3 m/s. (a) How long is the parachutist in the air  (b) At what height does the fall begin?

Explanation:

From one of the equations of kinematics for free fall

H = ut - \frac{1}{2}gt^{2}

Where H is the height

u is the initial velocity

t is the time

and g is the acceleration due to gravity (Take g = 9.8 m/s2)

Now, we can find the time spent before the parachute opens.

u = 0 m/s (we assume the parachutist starts from rest)

H = - 63 m

∴-63 = 0(t) - \frac{1}{2}(0.98) t^{2}  \\-63 = -4.9 t\\t^{2} = \frac{63}{4.9} \\t^{2} = 12.86\\t = \sqrt{12.86} \\t = 3.59 s

This the time spent before the parachute opens

Also from one of the equations of kinematics for free fall

v = u - gt

where v is the final velocity

We can determine the final velocity before the parachute opens and she starts to decelerate

∴v = - 9.8(3.59)\\v = - 35.18m/s

Now, we will calculate the time spent after the parachute opens

From one of the equation of kinematics for linear motion,

v = u + at

Here, the initial velocity will be the final velocity just before the parachute opens, that is

u = - 35.18 m/s

From the question,

v = - 3.3 m/s

a = 1.5 m/s^{2}

We then get

-3.3 = - 35.18 + (1.5)t

-3.3 + 35.18 =  1.5t\\31.88 = 1.5t

t = \frac{31.88}{1.5}

t = 21.25 secs

(a) To determine how long the parachutist is in the air,

That is sum of the time used when falling freely and the time used after the parachute opens

= 3.59 secs + 21.25 secs

24.84 secs

Hence, the parachutist spent 24.84 secs in air

(b) To determine what height the fall begins

First, we will calculate the height from which the parachute opens

From one of the equation of kinematics for linear motion,

x = ut + \frac{1}{2}at^{2}  \\

x = -35.18(21.25) + \frac{1}{2}(1.5)(21.25)^{2}  \\x = -747.58 + 338.67\\x = -408.91m\\

x ≅ - 409m

Hence, the height the fall begins is 63m + 409m

= 472 m

3 0
3 years ago
In the Bohr model of the hydrogen atom, an electron({rm mass};m=9.1; times 10^{ - 31;}{rm kg}) orbits a proton at a distance of
max2010maxim [7]

Answer:

n=6.56×10¹⁵Hz

Explanation:

Given Data

Mass=9.1×10⁻³¹ kg

Radius distance=5.3×10⁻¹¹m

Electric Force=8.2×10⁻⁸N

To find

Revolutions per second

Solution

Let F be the force of attraction

let n  be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by

F=mω²r......................where ω=2π  n

F=m4π²n²r...............eq(i)

as the values given where

Mass=9.1×10⁻³¹ kg

Radius distance=5.3×10⁻¹¹m

Electric Force=8.2×10⁻⁸N

we have to find n from eq(i)

n²=F/(m4π²r)

n^{2} =\frac{8.2*10^{-8} }{9.11*10^{-31}* 4\pi^{2} *5.3*10^{-11}  }\\ n^{2}=4.31*10^{31}\\ n=\sqrt{4.31*10^{31}}\\ n=6.56*10^{15}Hz

8 0
3 years ago
If the observed test value of a hypothesis test is outside of the established critical value(s), a researcher would __________.
sashaice [31]
I just had this question, the awnser is A.

6 0
3 years ago
Read 2 more answers
Other questions:
  • An eraser is thrown upward with an initial velocity of 5.0 m/s. The eraser's velocity after 7.0 seconds is ____ m/s.
    8·1 answer
  • When the wagon's brakes are off, the engine pulls the wagon forwards. A
    12·1 answer
  • Why are renewable energy resources going to be important in our future
    9·1 answer
  • ANSWER = BRAINLIEST<br><br> Attachment included ...
    11·1 answer
  • Can science answer every question
    15·2 answers
  • Which of the following is a conversion from light energy to chemical energy?
    15·2 answers
  • Are moons 1-4 waxing are waning ?
    12·1 answer
  • A system dissipates 12 JJ of heat into the surroundings; meanwhile, 28 JJ of work is done on the system. What is the change of t
    7·1 answer
  • The pressure of a liquid is given by P = pgh. Calculate the pressure (in SI unit) if the
    6·1 answer
  • A concrete slab of mass 200kg pulled 10m up a slop at an angle of 30 degree to the horizontal ,coefficient of friction (kinetic
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!