<span>First law of thermodynamics. This conservation law states that energy cannot be created or destroyed but can be changed from one form to another. In essence, energy is always conserved but can be converted from one form into another. Like when an engine burns fuel, it converts the energy stored in the fuel's chemical bonds into useful mechanical energy and then into heat, or more specifically, the melting ice cubes. Yeast breaks down maltose into glucose to produce alcohol and Co2 in the fermentation process. This is a prime example of the 1st law of thermodynamics. No form of usable energy is really lost; it only changes from one form to another</span>
Answer:
If we use the equation for the transformation of velocities for moving frames:
v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'
v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)
or v' = 1.2 c / (1 + .36) = .88 c
v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u (-.6 c) and we measure the speed of v as seen in the frame moving to the left
Speed of wave is given as

Wavelength of the wave is given as

now from the formula of wave time period we can say




so it will have time period of T = 4 s
Answer:
1: surface temperature
2: red giant
3: The brightest stars are called supergiants. Star clusters are rich in stars just off the main sequence called red giants. Main sequence stars are called dwarfs.
4: A white dwarf is very dense
5: red giant
plz mark me as brainliest :)
Answer:
Explanation:
The attraction weakens. Two objects that are farther apart are not drawn together as strongly as if they were close together.