1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
3 years ago
15

Can science answer every question

Physics
2 answers:
Alla [95]3 years ago
5 0
No because your opinion and beliefs answers many questions
Roman55 [17]3 years ago
3 0
No because everyone will have a different opinion or belief , which will make every problem in science different
You might be interested in
What constant acceleration, in SI units, must a car have to go from zero to 60 mph in 10 s? How far has the car traveled when it
nalin [4]

Answer:

Explanation:

initial velocity, u = 0

final velocity, v = 60 mph = 26.8 m/s

time t = 10 s

Let a be the acceleration and s be he distance traveled.

Use first equation of motion

v = u + a t

26.8 = 0 +  a x 10

a = 2.68 m/s

Use second equation of motion

s = ut + 1/2 at²

s = 0 + 0.5 x 2.68 x 10 x 10

s = 134 m

As, 1 m = 3.28 ft

So, s = 134 x 3.28 ft

s = 439.6 ft

7 0
3 years ago
A rock falls off a cliff. How fast will it be going after falling for 4.33 seconds?
bixtya [17]

Answer:42.43m/s

Explanation:According to vf=vi+at, we  can calculate it since v0 equals to 0. vf=0+9.8m/s^2*4.33s= 42.434m/s

4 0
1 year ago
The driver of a car slams on the brakes, causing the car to slow down at a rate of
sdas [7]

Answer:

A. The time taken for the car to stop is 3.14 secs

B. The initial velocity is 81.64 ft/s

Explanation:

Data obtained from the question include:

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Final velocity (V) = 0

Time (t) =?

Initial velocity (U) =?

A. Determination of the time taken for the car to stop.

Let us obtain an express for time (t)

Acceleration (a) = Velocity (V)/time(t)

a = V/t

Velocity (V) = distance (s) /time (t)

V = s/t

a = s/t^2

Cross multiply

a x t^2 = s

Divide both side by a

t^2 = s/a

Take the square root of both side

t = √(s/a)

Now we can obtain the time as follow

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Time (t) =..?

t = √(s/a)

t = √(256/26)

t = 3.14 secs

Therefore, the time taken for the car to stop is 3.14 secs

B. Determination of the initial speed of the car.

V = U + at

Final velocity (V) = 0

Deceleration (a) = –26ft/s2

Time (t) = 3.14 sec

Initial velocity (U) =.?

0 = U – 26x3.14

0 = U – 81.64

Collect like terms

U = 81.64 ft/s

Therefore, the initial velocity is 81.64 ft/s

7 0
3 years ago
Consider a small frictionless puck perched at the top of a xed sphere of radius R. If the puck is given a tiny nudge so that it
MakcuM [25]

Answer:

Explanation:

Let the vertical height by which it descends be h . Let it acquire velocity of v .

1/2 mv² = mgh

v² = 2gh

As it leaves the surface of sphere , reaction force of surface  R = 0 , so

centripetal force = mg cosθ where θ is the angular displacement from the vertex .  

mv² / r = mg cosθ

(m/r )x 2gh = mg cosθ

2h / r = cosθ

cosθ = (r-h) / r

2h / r =  r-h / r

2h = r-h

3h = r

h = r / 3

5 0
3 years ago
A 0.290 kg potato is tied to a string with length 2.50 m, and the other end of the string is tied to a rigid support. The potato
Sergeu [11.5K]

Answer:

A) The speed of the potato at the lowest point of its motion is 7.004 m/s

B) The tension on the string at this point is 8.5347 N

Explanation:

Here we have that the height from which the potato is allowed to swing  is 2.5 m

Therefore we have ω₂² = ω₁² + 2α(θ₂ - θ₁)

Where:

ω₂ = Final angular velocity

ω₁ = Initial angular velocity = 0 rad/s

α = Angular acceleration

θ₂ = Final angle position

θ₁ = Initial angle position

However, we have potential energy of the potato

= Mass m×Gravity g× Height h

= 0.29×9.81×2.5 = 7.1125 J

At he bottom of the swing, the potential energy will convert to kinetic energy as follows

K.E. = P.E. = 7.1125 J

1/2·m·v² = 7.1125 J

Therefore,

v² = 7.1125 J/(1/2×m) = 7.1125 J/(1/2×0.290) = 49.05

∴ v = √49.05 = 7.004 m/s

B) Here we have the tension given by

Tension T in the string = weight of potato + Radial force of motion

Weight of potato = mass of potato × gravity

Radial force of motion of potato = mass of potato × α,

where α = Angular acceleration = v²/r and r = length of the string

∴ Tension T in the string = m×g + m×v²/r = 0.290×(9.81 + 7.004²/2.5)

T = 8.5347 N

4 0
3 years ago
Read 2 more answers
Other questions:
  • a 0.24 kg blob of clay is thrown at a wall with an initial velocity of 19m/s. the clay comes to a stop against the wall in 82ms,
    15·1 answer
  • A 10.0-cm-diameter and a 20.0-cm-diameter charged ring are arranged concentrically (so they share the same axis). Assume both ar
    6·1 answer
  • Has a homogeneous composition that cannot be broken down or separated using physical means
    8·1 answer
  • Which molecule has charges that are free to move around?
    15·1 answer
  • PLS HELP ME. A 0.0780 kg lemming runs off a 5.36m high cliff at 4.84 m/s what is it potential energy when it lands?​
    5·1 answer
  • Based on information from the graph above, what can be concluded about the relationship between the temperature of a solvent and
    13·1 answer
  • What is the fault-current circuit breaker? Describe its function.
    10·2 answers
  • Which equations are equivalent to 3/4+m=-7/4? Select three options.
    14·1 answer
  • If you run North for 5 meters and then East for 15 meters and then
    11·1 answer
  • Activity log - Chest and Back Record your time and activity below and in your unit fitness log. If a particular category does no
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!