I suppose you mean

Recall that

which converges everywhere. Then by substitution,

which also converges everywhere (and we can confirm this via the ratio test, for instance).
a. Differentiating the Taylor series gives

(starting at
because the summand is 0 when
)
b. Naturally, the differentiated series represents

To see this, recalling the series for
, we know

Multiplying by
gives

and from here,


c. This series also converges everywhere. By the ratio test, the series converges if

The limit is 0, so any choice of
satisfies the convergence condition.
Roughly, $760 For Her 40 Hours Per Week
Answer:
E green team, because their score starts from 75 to 90, whiles the red starts from 80 to 85
Answer:
B, C
Step-by-step explanation:
x-intercepts are when y=0. f(x) has two x-intercepts at (1, 0) and (5, 0). g(x) also has two x-intercepts; (-3, 0) and (5, 0). So the first one is false, and the second one is true.
The maximum value of f(x) is 2. The maximum value of g(x) is 4. So the third one is true.
The y-intercept is the value of y when x=0. So the y-intercept of f(x) is -1, and the y-intercept of g(x) is 3. So the fourth one is false.