The numbers are 2 and 8 because the ratio of 6 to 3 is 2:1
Answer:
If you both have 1M subs then its the same, not one person has more
Answer:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
a) ![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
b) ![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Step-by-step explanation:
For this case we have the following function:
![P= 8000 (1- \frac{5}{5 +e^{-0.002 x}})](https://tex.z-dn.net/?f=%20P%3D%208000%20%281-%20%5Cfrac%7B5%7D%7B5%20%2Be%5E%7B-0.002%20x%7D%7D%29)
We can solve for x like this. First we can reorder the expression like this:
![\frac{P}{8000} = 1- \frac{5}{5+e^{-0.002x}}](https://tex.z-dn.net/?f=%20%5Cfrac%7BP%7D%7B8000%7D%20%3D%201-%20%5Cfrac%7B5%7D%7B5%2Be%5E%7B-0.002x%7D%7D)
![\frac{5}{5+e^{-0.002x}} = 1 -\frac{P}{8000} = \frac{8000-P}{8000}](https://tex.z-dn.net/?f=%20%5Cfrac%7B5%7D%7B5%2Be%5E%7B-0.002x%7D%7D%20%3D%201%20-%5Cfrac%7BP%7D%7B8000%7D%20%3D%20%5Cfrac%7B8000-P%7D%7B8000%7D)
![\frac{40000}{8000-P} = 5 + e^{-0.002x}](https://tex.z-dn.net/?f=%20%5Cfrac%7B40000%7D%7B8000-P%7D%20%3D%205%20%2B%20e%5E%7B-0.002x%7D)
Now we can apply natura log on both sids and we got:
![ln[\frac{40000}{8000-P} -5] = ln e^{-0.002x}](https://tex.z-dn.net/?f=%20ln%5B%5Cfrac%7B40000%7D%7B8000-P%7D%20-5%5D%20%3D%20ln%20e%5E%7B-0.002x%7D)
![ln [\frac{5P}{8000-P}] = -0.002x](https://tex.z-dn.net/?f=%20ln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%20%3D%20-0.002x%20)
And if we solve for x we got:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
Part a
For this case we can replace P = 200 and see what we got for x like this:
![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
Part b
For this case we can replace P = 800 and see what we got for x like this:
![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Answer:
-0.46
Step-by-step explanation:
We have small sample sizes n1 = 9 and n2 = 9.
,
;
,
.
![s_{p}^{2} = \frac{(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2} = \frac{(9-1)(7.47)^{2}+(9-1)(5.75)^{2}}{9+9-2} = 44.43](https://tex.z-dn.net/?f=s_%7Bp%7D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28n_%7B1%7D-1%29s_%7B1%7D%5E%7B2%7D%2B%28n_%7B2%7D-1%29s_%7B2%7D%5E%7B2%7D%7D%7Bn_%7B1%7D%2Bn_%7B2%7D-2%7D%20%3D%20%5Cfrac%7B%289-1%29%287.47%29%5E%7B2%7D%2B%289-1%29%285.75%29%5E%7B2%7D%7D%7B9%2B9-2%7D%20%3D%2044.43)
Because Carlos conducts a study comparing the performance of individuals on the first quiz in each of two classes taken in the first term of their freshman year, the hypothesis null is
, then, the observed t-value is
![t=\frac{(\bar{x}_{1}-\bar{x}_{2})-0}{s{p}\sqrt{1/n1+1/n2}} = \frac{-1.45}{6.67(0.47)} = -0.46](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B%28%5Cbar%7Bx%7D_%7B1%7D-%5Cbar%7Bx%7D_%7B2%7D%29-0%7D%7Bs%7Bp%7D%5Csqrt%7B1%2Fn1%2B1%2Fn2%7D%7D%20%3D%20%5Cfrac%7B-1.45%7D%7B6.67%280.47%29%7D%20%3D%20%20-0.46)