Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3
I also worked it out but I got -5/3
2(6p-5) ≥ 3(p-8) -1
12p-10 ≥ 3p-24-1
12p-10 ≥ 3p-25
12p-3p ≥ -25+10
9p ≥ -15
-15/9
P ≥ -5/3
Answer:
The functions are inverses; f(g(x)) = x ⇒ answer D
⇒ answer D
Step-by-step explanation:
* <em>Lets explain how to find the inverse of a function</em>
- Let f(x) = y
- Exchange x and y
- Solve to find the new y
- The new y = 
* <em>Lets use these steps to solve the problems</em>
∵ 
∵ f(x) = y
∴ 
- Exchange x and y
∴ 
- Square the two sides
∴ x² = y - 3
- Add 3 to both sides
∴ x² + 3 = y
- Change y by 
∴ 
∵ g(x) = x² + 3
∴ 
∴ <u><em>The functions are inverses to each other</em></u>
* <em>Now lets find f(g(x))</em>
- To find f(g(x)) substitute x in f(x) by g(x)
∵ 
∵ g(x) = x² + 3
∴ 
∴ <u><em>f(g(x)) = x</em></u>
∴ The functions are inverses; f(g(x)) = x
* <em>Lets find the inverse of h(x)</em>
∵ h(x) = 3x² - 1 where x ≥ 0
- Let h(x) = y
∴ y = 3x² - 1
- Exchange x and y
∴ x = 3y² - 1
- Add 1 to both sides
∴ x + 1 = 3y²
- Divide both sides by 3
∴ 
- Take √ for both sides
∴ ± 
∵ x ≥ 0
∴ We will chose the positive value of the square root
∴ 
- replace y by 
∴ 
Answer:
a) 62
b) 31/45
Step-by-step explanation:
a) The table tells you there are 42 males, and 20 more females that study biology.
42 +20 = 62 . . . are male or study biology or both
__
b) Of the total of 90 people, 62 are male or study biology (or both). The probability that any person is in that category is ...
62/90 = 31/45 = P(male or biology)
2p-3=12p = 20
the answer is
p = 18