Answer:
The Answer would be option C. 3/4 books per hour
Step-by-step explanation:
You would flip 1/3 to 3/1 which makes it a whole number. then multiply
1/4 and 3.
Therefore your answer is 3/4
I hope this helped you,
Answer:
Area of rectangle: 256
Area of triangle 1: 24
Area of triangle 2: 16
Area of triangle 3: 96
Area of trapezoid: 120
Step-by-step explanation:
I just did the question on the thing so Ik I'm right.
-The graph measures by twos. To get the area of the rectangle get the base times height of it. That would be 16x16=256.
-Get base (8) times height (6) of triangle 1 then divide by 2, remember to count the squares by 2 for finding all areas. The formula would be 1/2(b)(h) because dividing by 2 is the same as multiplying times 1/2. Plug it in and (8)(6)=48 then divide by 2 which equals 24.
-Same formula for triangle 2. Plug it in and (8)(4)=32 and divide by 2 and it equals 16.
-Same formula for triangle 3. Plugged in is (12)(16)=192 divide by 2 and it equals 96.
-To find the area of the trapezoid get your rectangle area (256) and subtract all the triangle areas. So 256 - 6 - 16 - 96 = 120.
Answer:
m 7=129
Step-by-step explanation:
if 6 and 7 are right next to each other. it makes 180 degrees so you would take 180-51 to get your answer
The second one is a perfect square trinomial
X^2+16x+64
Answer:
y = 9x/5 + 50
Step-by-step explanation:
We are represent the information as coordinate (x,y)
If the cost for an order of 100 kilograms of steel bars is $230, this is expressed as (100, 230)
Also if the cost for an order of 150 kilograms of steel bars is $320, this is expressed as;
(150, 320)
Find the equation of a line passing through the points. The standard form of the equation is expressed as y = mx+c
m is the slope
c is the intercept
Get the slope;
m = y2-y1/x2-x1
m = 320-230/150-100
m = 90/50
m = 9/5
Get the y-intercept by substituting m = 9/5 and any point say (100, 230) into the expression y = mx+c
230 = 9/5(100)+c
230 = 9(20)+c
230 = 180 + c
c = 230-180
c = 50
Get the required equation
y = mx+c
y = 9/5 x + 50
Hence an equation for the cost of an order of steel bars (y) in terms of the weight of steel bars ordered (x) is y = 9x/5 + 50