Answer:
which pic...? there is no picture attached to your question
Answer:0.1759 v
Explanation:
Intensity of wave at receiver end is
I=
I=
I=
Amplitude of electric field at receiver end

Amplitude of induced emf
=
=
=
Answer:
Tension in the supporting cable is = 4,866 N ≅4.9 KN
Explanation:
First of all, we need to understand that tension is a force, so the motion law
F = Ma applies perfectly.
From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.
Parameters given:
Mass of load = 1650 kg
Acceleration of load = ?
The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.
Time taken = distance covered / velocity
=
= 3.73 seconds
∴Acceleration = ( initial velocity - final velocity )/ time taken
Note: Final velocity is = 0 since the body came to a rest.
Acceleration =
= 2.95m/
Force acting on the cable = mass of elevator × acceleration of elevator
= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN

Solution is in attachment ~
I hope that you got what you were looking for, and if there's different data then go through the same procedure, using same formula with different values and you will get your answer ~

Answer:
El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Explanation:
El mango experimenta un movimiento de caída libre, es decir, un movimiento uniformemente acelerado debido a la gravedad terrestre, despreciando los efectos de la viscosidad del aire y la rotación planetaria. Entonces, la velocidad final del mango, es decir, la velocidad con la que llega al suelo, se puede determinar mediante la siguiente fórmula cinemática:
(1)
Donde:
- Velocidad inicial, en metros por segundo.
- Velocidad final, en metros por segundo.
- Aceleración gravitacional, en metros por segundo al cuadrado.
- Tiempo, en segundos.
Si sabemos que
,
y
, entonces la velocidad final del mango es:



El mango llega al suelo a una velocidad de 329.982 metros por segundo.