Answer:
Newton's First Law of Motion
Explanation:
Without external forces acting on an object, the object tends to move at constant speed in a straight line. This property is referred to as inertia. Newton's first law states this natural observation.
Answer:

Explanation:
From the question we are told that
Distance b/e antenna's 
Frequency of antenna Radiation
Distance from receiver 
Intensity of Receiver 
Distance difference of the receiver b/w antenna's 
Generally the equation for Phase difference
is mathematically given by



<h3>

</h3>
Therefore phase difference f between the two radio waves produced by this path difference is given as

F = 130 revs/min = 130/60 revs/s = 13/6 revs/s
t = 31s
wi = 2πf = 2π × 13/6 = 13π/3 rads/s
wf = 0 rads/s = wi + at
a = -wi/t = -13π/3 × 1/31 = -13π/93 rads/s²
wf² - wi² = 2a∅
-169π²/9 rads²/s² = 2 × -13π/93 rads/s² × ∅
∅ = 1209π/18 rads
n = ∅/2π = (1209π/18)/(2π) = 1209/36 ≈ 33.5833 revolutions.
Answer:
Yes
Explanation:
There are two types of interference possible when two waves meet at the same point:
- Constructive interference: this occurs when the two waves meet in phase, i.e. the crest (or the compression, in case of a longitudinale wave) meets with the crest (compression) of the other wave. In such a case, the amplitude of the resultant wave is twice that of the original wave.
- Destructive interferece: this occurs when the two waves meet in anti-phase, i.e. the crest (or the compression, in case of a longitudinal wave) meets with the trough (rarefaction) of the other wave. In this case, the amplitude of the resultant wave is zero, since the amplitudes of the two waves cancel out.
In this problem, we have a situation where the compression of one wave meets with the compression of the second wave, so we have constructive interference.