The subfuctions of the piecewise function f(x) are linear functions
The matching values of the domain values with the range values are
x f(x)
-4 -7
-2 -8
0 -2
2 4
4 -4
8 -12
<h3>How to evaluate the piece-wise function?</h3>
The function is given as:
![f(x) = \left[\begin{array}{cc}x-3&x\le-4\\3x-2&-4 < x\le 2\\-2x+4&x > 2\end{array}\right]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx-3%26x%5Cle-4%5C%5C3x-2%26-4%20%3C%20x%5Cle%202%5C%5C-2x%2B4%26x%20%3E%202%5Cend%7Barray%7D%5Cright%5D)
The above definition means that:
- All x values less than or equal to -4 would be evaluated using f(x) = x - 3
- All x values greater than -4 but less than or equal to 2 would be evaluated using f(x) = 3x - 2
- All x values greater than 2 would be evaluated using f(x) = -2x + 4
Using the above highligts, we have:
f(-4) = -4 - 3 = -7
f(-2) = 3(-2) - 2 = -8
f(0) = 3(0) - 2 = -2
f(2) = 3(2) - 2 = 4
f(4) = -2 * 4 + 4 = -4
f(8) = -2 * 8 + 4 = -12
So, the matching values are
x f(x)
-4 -7
-2 -8
0 -2
2 4
4 -4
8 -12
Read more about piecewise functions at:
brainly.com/question/10733545