Put in a equality
20 > (70/x)
then you solve
20x > 70
x>70/20
x> 3.5 you can not put part of a chair in a row so you round up
****You can put 4 or more chairs in a row****
For this case, the parent function is given by:

We apply the following function transformation:
Vertical compressions:
To graph y = a * f (x)
If 0 <a <1, the graph of y = f (x) is compressed vertically by a factor a. (Shrinks)
We have then:

Horizontal translations:
Suppose that h> 0
To graph y = f (x + h), move the graph of h units to the left.
We have then:

Vertical translations:
Suppose that k> 0
To graph y = f (x) + k, move the graph of k units up.
We have then:
Answer:
Vertical compression by factor of 1/2. Horizontal displacement 3 units to the left. Vertical displacement 2 units up.
Let x be the lengths of the steel rods and X ~ N (108.7, 0.6)
To get the probability of less than 109.1 cm, the solution is computed by:
z (109.1) = (X-mean)/standard dev
= 109.1 – 108/ 0.6
= 1.1/0.6
=1.83333, look this up in the z table.
P(x < 109.1) = P(z < 1.8333) = 0.97 or 97%
Answer:
−35.713332 ; 0.313332
Step-by-step explanation:
Given that:
Sample size, n1 = 11
Sample mean, x1 = 79
Standard deviation, s1 = 18.25
Sample size, n2 = 18
Sample mean, x2 = 96.70
Standard deviation, s2 = 20.25
df = n1 + n2 - 2 ; 11 + 18 - 2 = 27
Tcritical = T0.01, 27 = 2.473
S = sqrt[(s1²/n1) + (s2²/n2)]
S = sqrt[(18.25^2 / 11) + (20.25^2 / 18)]
S = 7.284
(μ1 - μ2) = (x1 - x2) ± Tcritical * S
(μ1 - μ2) = (79 - 96.70) ± 2.473*7.284
(μ1 - μ2) = - 17.7 ± 18.013332
-17.7 - 18.013332 ; - 17.7 + 18.013332
−35.713332 ; 0.313332