The answer is HCl, C3H6 and C2H5OH. Hydrochloric acid has the lowest boiling point among the three choices since it only has weak dipole-dipole and Van der Waal's forces between molecules which are much weaker than the forces of attraction present in propane and ethanol. Ethanol has the highest since the hydrogen bonding present in ethanol make it hard to break the bonds.
Answer:
Option A
Explanation:
Temperature of a body is due to the heat gained or loss. During a phase change, the atoms or molecules of a substance are undergoing change is temperature due to which no temperature change is observed during phase change. The heat in the transition phase is used to break bonds and the change in temperature is felt when kinetic energy change is complete. During transition, the average kinetic energy of the molecules remains unchanged and hence during a phase change a temperature do not changes until unless the phase change is completed.
Hence, option A is correct
Answer:
0.287 mole of PCl5.
Explanation:
We'll begin by calculating the number of mole in 51g of Cl2. This is illustrated below:
Molar mass of Cl2 = 2 x 35.5 = 71g/mol
Mass of Cl2 = 51g
Number of mole of Cl2 =..?
Mole = Mass /Molar Mass
Number of mole of Cl2 = 51/71 = 0.718 mole
Next, we shall write the balanced equation for the reaction. This is given below:
P4 + 10Cl2 → 4PCl5
Finally, we determine the number of mole of PCl5 produced from the reaction as follow:
From the balanced equation above,
10 moles of Cl2 reacted to produce 4 moles of PCl5.
Therefore, 0.718 mole of Cl2 will react to produce = (0.718 x 4)/10 = 0.287 mole of PCl5.
Therefore, 0.287 mole of PCl5 is produced from the reaction.
Answer:
Option (D) is definitely the answer.
Explanation:
Before going further, it is important to know what buffers and pH represent, which are keywords to answering this question.
Buffers is a special solution that can withstand or resist changes due to pH levels which may be as a result of an introduction of acidic or basic components into the blood. In other words, they maintain the stability of pH level in the human blood.
pH blood levels on the other hand, can be grouped into three: acidity, neutrality and alkalinity. Using a pH scale, one can determine its current level. In the human blood the pH level is near neutral and needs to be on a level near 7.4 in order to avoid a high rise or a drastic fall even if acidic or basic components come in or departs the blood stream.
Therefore, if one of the buffers that contributes to pH stability in human blood is carbonic acid, which is as a result of a combination of carbon dioxide and water in the blood stream. On getting to the lungs it is converted to water and subsequently released as waste. Maintaining this stability will definitely be to decrease the concentration of carbonic acid and increase that of water instead.