I believe the correct answer from the choices listed above is option A. <span>A forward reaction in which adding heat decreases product formation is exothermic, while a forward reaction in which adding heat increases product formation is endothermic. Exothermic would mean that heat is being released by the process while the opposite is called endothermic in which it absorbs heat.</span>
Answer:
b. Beta emission, beta emission
Explanation:
A factor to consider when deciding whether a particular nuclide will undergo this or that type of radioactive decay is to consider its neutron:proton ratio (N/P).
Now let us look at the N/P ratio of each atom;
For B-13, there are 8 neutrons and five protons N/P ratio = 8/5 = 1.6
For Au-188 there are 109 neutrons and 79 protons N/P ratio = 109/79=1.4
For B-13, the N/P ratio lies beyond the belt of stability hence it undergoes beta emission to decrease its N/P ratio.
For Au-188, its N/P ratio also lies above the belt of stability which is 1:1 hence it also undergoes beta emission in order to attain a lower N/P ratio.
Carbon-12 has the following electron configuration: 1s2-2s2-2p2. As seen in the configuration, the right answer is: the first electron shell has 4 orbitals.
According to the reversible reaction equation:
2Hi(g) ↔ H2(g) + i2(g)
and when Keq is the concentration of the products / the concentration of the reactants.
Keq = [H2][i2]/[Hi]^2
when we have Keq = 1.67 x 10^-2
[H2] = 2.44 x 10^-3
[i2] = 7.18 x 10^-5
so, by substitution:
1.67 x 10^-2 = (2.44 x 10^-3)*(7.18x10^-5)/[Hi]^2
∴[Hi] = 0.0033 M