Answer:
Explanation:
Ionization energy:
It is the minimum amount of energy required to remove the electron from isolated gaseous atom to make the ion.
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell.
When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required. Where as,
When we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Answer:
The reactant/reagent that would be most atom economical is EtI (Ethy Iodide) and KOH (potassium oxide) as base
This is because the iodo group are weak base hence they have a good leaving character (i.e they are unstable on their own ) which would increase the rate of reaction and the strong base KOH give the most atom economical
Explanation:
The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
<h2>It can happen when liquids are cold or when they are warm. ... It turns out that all liquids can evaporate at room temperature and normal air pressure. Evaporation happens when atoms or molecules escape from the liquid and turn into a vapor. Not all of the molecules in a liquid have the same energy.</h2>