Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?
Answer:
i need help with that too.
Explanation:
Answer:
Gas giants.
Explanation:
Jupiter, Saturn, Uranus, and Neptune are the gas giants of our solar system.
In general chemistry, isotopes are substances that belong to one specific element. So, they all have the same atomic numbers. But they only differ in the mass numbers, or the number of protons and neutrons in the nucleus. In a nutshell, they only differ in the number of neutrons.
For Nickel, there are 5 naturally occurring isotopes. Their identities, masses and relative abundance are listed below
Isotope Abundance Atomic Mass
Ni-58 68.0769% <span>57.9353 amu
Ni-60 </span>26.2231% <span>59.9308 amu
Ni-61 </span>1.1399 % <span>60.9311 amu
Ni-62 </span>3.6345% <span>61.9283 amu
Ni-64 </span>0.9256% <span>63.9280 amu
To determine the average atomic mass of Nickel, the equation would be:
Average atomic mass = </span>∑Abundance×Atomic Mass
Using the equation, the answer would be:
Average atomic mass = 57.9353(68.0769%) + 59.9308(26.2231%) + 60.9311(1.1399%) + 61.9283(3.6345%) + 63.9280(0.9256%)
Average atomic mass = 58.6933 amu
Answer:
A3B3
Explanation:
Molecular formula = n x empirical formula
(AB) n = 90
MM of AB = 30 g/mol
30n = 90
Divide both side by the coefficient n i.e 30
n = 90/30 = 3
Molecular formula = n x empirical formula
Molecular formula = n x (AB)
Molecular formula = 3(AB) = A3B3