If the side length is greater than 11.11 cm then it will not overflow.
Otherwise, it will overflow.
If Joe tips the bucket of water in a cuboid container and the water is not overflowing then the cuboid container must be of volume greater than 1370 cm³.
We find the cube root of 1370 cm³.
![\sqrt[3]{1370} \approx11.11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1370%7D%20%5Capprox11.11)
Then the cuboid container should have a side of length greater than 11.11 cm.
Here the statement "If I tip my bucket of water in the cuboid container, it will never overflow" is correct or wrong based on the information that the container has a side length lesser or greater than 11.11 cm.
If the side length is greater than 11.11 cm then it will not overflow.
Otherwise, it will overflow.
Learn more about volume here-
brainly.com/question/1578538
#SPJ10
Answer:
{x,y} = {6,7}
Step-by-step explanation:
[1] 2x = 12
[1] x = 6
// Plug this in for variable x in equation [2]
[2] (6) - 5y = -29
[2] - 5y = -35
// Solve equation [2] for the variable y
[2] 5y = 35
[2] y = 7
// By now we know this much :
x = 6
y = 7
We are done
brainlest plz and thx
Answer:
Step-by-step explanation:Given that
f(x)=ax+b
so registration fee=b=$10
Each hour fee=a=$5
where x represnts hours
when
x=0
f(0)=5(0)+10
f(0)=10
f(1)=5(1)+10
f(1)=15
f(2)=5(2)+10
f(2)=20
and so on...
Answer:
The answer is = 52
Step-by-step explanation:
Answer:
1st: 3*root6 + 5
2nd: 35*root2 + 115
3rd: 24*root2 - 20*root6 + 15*root3 - 18
4th: 17*root6 - 38
5th: 13*root10 - 42
Step-by-step explanation:
To simplify these expressions we need to use the distributive property:
(a + b) * (c + d) = ac + ad + bc + bd
So simplifying each expression, we have:
1st.
(2 root 2 + root 3 ) ( 2 root 3 - root 2)
= 4*root6 - 2*2 + 2*3 - root6
= 3*root6 - 4 + 9
= 3*root6 + 5
2nd.
(root 5 + 2 root 10) (3 root 5 + root 10)
= 3 * 5 + root50 + 6*root50 + 2*10
= 15 + 5*root2 + 30*root2 + 100
= 35*root2 + 115
3rd.
(4 root 6 - 3 root 3) (2 root 3 - 5)
= 8*root18 - 20*root6 - 6*3 + 15root3
= 24*root2 - 20*root6 + 15*root3 - 18
4rd.
(6 root 3 - 5 root 2 ) (2 root 2 - root 3)
= 12*root6 - 6*3 - 10*2 + 5*root6
= 17*root6 - 18 - 20
= 17*root6 - 38
5th.
(root 10 - 3 ) ( 4 - 3 root 10)
= 4*root10 - 3*10 - 12 + 9*root10
= 13*root10 - 30 - 12
= 13*root10 - 42