Answer:
<u>Secant</u>: a straight line that intersects a circle at two points.
<u>Intersecting Secants Theorem</u>
If two secant segments are drawn to the circle from one exterior point, the product of the measures of one secant segment and its external part is equal to the product of the measures of the other secant segment and its external part.
From inspection of the given diagram:
- M = Exterior point
- MK = secant segment and ML is its external part
- MS = secant segment and MN is its external part
Therefore:
⇒ ML · MK = MN · MS
Given:
- MK = (x + 15) + 6 = x + 21
- ML = 6
- MS = 7 + 11 = 18
- MN = 7
Substituting the given values into the formula and solving for x:
⇒ ML · MK = MN · MS
⇒ 6(x + 21) = 7 · 18
⇒ 6x + 126 = 126
⇒ 6x = 0
⇒ x = 0
Substituting the found value of x into the expression for KL:
⇒ KL = x + 15
⇒ KL = 0 + 15
⇒ KL = 15

, and
. Subtracting this from the numerator gives a remainder of

, and
. Subtracting this from the previous remainder gives a new remainder of

is not a multiple of
, so we're done. Then

Answer: x+y=
Step-by-step explanation:
you would just write it out step by step explaining wht u need to do to solve the question
Answer:
d and e
Step-by-step explanation:
IV must have a pos x value and a negative y value
we can eliminate everything except d e & f
f is wrong bc it has a positive 3 value