Answer:
a2 (10x10) + b2 (4x4) = c2 (100+16)
Answer: √116
It’s (-8z^2 +8x +4y -2z)
Hope it helps
Answer:
the second one, ((6 x 5) x 4) +((5 x 4) x 2) = 160
the third one, ((7 x 6) x 4) + (6 x 4) x 2) = 216
the fourth one, ((8 x 4) x 4) + ((4 x 3) x 2) = 152
Step-by-step explanation:
Answer:
a = 3, b = 0, c = 0, d = -2
Step-by-step explanation:
<em>To find the reflection Multiply the matrices</em>
∵ The dimension of the first matrix is 2 × 2
∵ The dimension of the second matrix is 2 × 3
<em>1. Multiply the first row of the 1st matrix by each column in the second matrix add the products of each column to get the first row in the 3rd matrix.</em>
2. Multiply the second row of the 1st matrix by each column in the second matrix add the products of each column to get the second row of the 3rd matrix
×
= ![\left[\begin{array}{ccc}(1*0+0*0)&(1*3+0*0)&(1*0+0*2)\\(0*0+-1*0)&(0*3+-1*0)&(0*0+-1*2)\end{array}\right]=\left[\begin{array}{ccc}0&3&0\\0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%281%2A0%2B0%2A0%29%26%281%2A3%2B0%2A0%29%26%281%2A0%2B0%2A2%29%5C%5C%280%2A0%2B-1%2A0%29%26%280%2A3%2B-1%2A0%29%26%280%2A0%2B-1%2A2%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%263%260%5C%5C0%260%26-2%5Cend%7Barray%7D%5Cright%5D)
Compare the elements in the answer with the third matrix to find the values of a, b, c, and d
∴ a = 3
∴ b = 0
∴ c = 0
∴ d = -2
Answer:
8/7/100 0_0
Step-by-step explanation: