Answer: no se wey jaja que le pusiste tu ?
Explanation:
Its <span>c.chromatography is the process of separating solutions on the basis of their boiling points </span>
The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.
Weight of the balloon = 2.0 g
Six weights each of mass 30.0 g is added to the balloon.
Total mass of the balloon = 2.0 g + 6*30.0 g = 182 g
Density of salt water = 1.02 g/mL
Calculating the volume from mass and density:

Converting the volume from mL to cubic cm:

Assuming the balloon to be a sphere,
Volume of the sphere =
π

r = 3.49 cm
Radius of the balloon = 3.49 cm
Diameter of the balloon = 2 r = 2*3.49 cm = 6.98cm
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1 x V1 / V2
P2 = 2.0 x 1.5 / 3
<span>P2 = 1 atm</span>