Answer:
B) Iron (c=0.45 J/g°C)
Explanation:
Given that:-
Heat gain by water = Heat lost by metal
Thus,
Where, negative sign signifies heat loss
Or,
For water:
Mass = 120 g
Initial temperature = 21.8 °C
Final temperature = 24.5 °C
Specific heat of water = 4.184 J/g°C
For metal:
Mass = 40.2 g
Initial temperature = 99.3 °C
Final temperature = 24.5 °C
Specific heat of metal = ?
So,



<u>This value corresponds to iron. Thus answer is B.</u>
This is an incomplete question, here is a complete question.
Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties.
CaCO₃, Ksp = 8.7 × 10⁻⁹
Answer : The solubility of CaCO₃ is, 
Explanation :
As we know that CaCO₃ dissociates to give
ion and
ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ca^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
Let solubility of CaCO₃ be, 's'




Therefore, the solubility of CaCO₃ is, 
Isotopes are atoms of the same element that have different numbers of neutrons.
Answer:
the answer will be 2,280 cm>2
Answer:
0.32 M
Explanation:
Step 1: Write the balanced reaction at equilibrium
Ag₂S(s) ⇌ 2 Ag⁺(aq) + S²⁻(aq)
Step 2: Calculate the concentration of Ag⁺ at equilibrium
We will use the formula for the concentration equilibrium constant (Keq), which is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species.
Keq = [Ag⁺]² × [S²⁻]
[Ag⁺] = √{Keq / [S²⁻]}
[Ag⁺] = √{2.4 × 10⁻⁴ / 0.0023} = 0.32 M