Step-by-step explanation:
x²-11x+32=4
x²-11x+28=0
(x-4)(x-7)=0
x=4 or x=7
_______
x²+8x-5=4
x²+8x-9=0
(x+9)(x-1)=0
x=-9 or x=1
_______
x²+x+4=5x+1
x²-4x+3=0
(x-1)(x-3)=0
x=1 or x=3
________
x²+x-24=-8x-2
x²+9x-22=0
(x+11)(x-2)=0
x=-11 or x=2
Answer:
There are two choices for angle Y:
for
,
for
.
Step-by-step explanation:
There are mistakes in the statement, correct form is now described:
<em>In triangle XYZ, measure of angle X = 49°, XY = 18 and YZ = 14. Find the measure of angle Y:</em>
The line segment XY is opposite to angle Z and the line segment YZ is opposite to angle X. We can determine the length of the line segment XZ by the Law of Cosine:
(1)
If we know that
,
and
, then we have the following second order polynomial:
![14^{2} = XZ^{2} + 18^{2} - 2\cdot (18)\cdot XZ\cdot \cos 49^{\circ}](https://tex.z-dn.net/?f=14%5E%7B2%7D%20%3D%20XZ%5E%7B2%7D%20%2B%2018%5E%7B2%7D%20-%202%5Ccdot%20%2818%29%5Ccdot%20XZ%5Ccdot%20%5Ccos%2049%5E%7B%5Ccirc%7D)
(2)
By the Quadratic Formula we have the following result:
![XZ \approx 15.193\,\lor\,XZ \approx 8.424](https://tex.z-dn.net/?f=XZ%20%5Capprox%2015.193%5C%2C%5Clor%5C%2CXZ%20%5Capprox%208.424)
There are two possible triangles, we can determine the value of angle Y for each by the Law of Cosine again:
![XZ^{2} = XY^{2} + YZ^{2} - 2\cdot XY \cdot YZ \cdot \cos Y](https://tex.z-dn.net/?f=XZ%5E%7B2%7D%20%3D%20XY%5E%7B2%7D%20%2B%20YZ%5E%7B2%7D%20-%202%5Ccdot%20XY%20%5Ccdot%20YZ%20%5Ccdot%20%5Ccos%20Y)
![\cos Y = \frac{XY^{2}+YZ^{2}-XZ^{2}}{2\cdot XY\cdot YZ}](https://tex.z-dn.net/?f=%5Ccos%20Y%20%3D%20%5Cfrac%7BXY%5E%7B2%7D%2BYZ%5E%7B2%7D-XZ%5E%7B2%7D%7D%7B2%5Ccdot%20XY%5Ccdot%20YZ%7D)
![Y = \cos ^{-1}\left(\frac{XY^{2}+YZ^{2}-XZ^{2}}{2\cdot XY\cdot YZ} \right)](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%20%5E%7B-1%7D%5Cleft%28%5Cfrac%7BXY%5E%7B2%7D%2BYZ%5E%7B2%7D-XZ%5E%7B2%7D%7D%7B2%5Ccdot%20XY%5Ccdot%20YZ%7D%20%5Cright%29)
1) ![XZ \approx 15.193](https://tex.z-dn.net/?f=XZ%20%5Capprox%2015.193)
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-15.193^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-15.193%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)
![Y \approx 54.987^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2054.987%5E%7B%5Ccirc%7D)
2) ![XZ \approx 8.424](https://tex.z-dn.net/?f=XZ%20%5Capprox%208.424)
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-8.424^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-8.424%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)
![Y \approx 27.008^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2027.008%5E%7B%5Ccirc%7D)
There are two choices for angle Y:
for
,
for
.
Answer:
depends on how much pizza he has.
Step-by-step explanation:
.
Answer:
I don't know sorry for no answer
Its false because it can't repeat in a set.