The amount of money Ben had to begin with after spending 1/6 and 1/2 of it is 57 dollars.
<h3>How to find the how much money he had with an equation?</h3>
let
x = amount he had to begin with
He spent 1/6 of his money on a burger, fries, and a drink. Therefore,
amount spent on burger, fries, and a drink = 1 / 6 x
Hence,
amount he had left = x - 1 / 6 x =6x - x /6 = 5 / 6 x
Then he spent half of the money he had left.
1 / 2(5 /6 x) = 5 + 8.25 + 10.50
5 / 12 x = 23.75
cross multiply
5x = 23.75 × 12
5x = 285
divide both sides by 5
x = 285 / 5
x = 57
Therefore, the amount of money he have to begin with is $57.
learn more on equation here: brainly.com/question/5718696
3 : 4 : 5 = 3² : 4² : 5² = 9 : 16 : 25
The answer is B.
Hope this helps.
Answer:
the minimum production level is costing $800 (0.8×$1000) per hour for 2000 (2×1000) items produced per hour.
Step-by-step explanation:
if there is no mistake in the problem description, I read the following function :
C(x) = y = 0.3x² - 1.2x + 2
I don't know if you learned this already, but to find the extreme values of a function you need to build the first derivative of the function y' and find its solutions for y'=0.
the first derivative of C(x) is
0.6x - 1.2 = y'
0.6x - 1.2 = 0
0.6x = 1.2
x = 2
C(2) = 0.3×2² - 1.2×2 + 2 = 0.3×4 - 2.4 + 2 = 1.2-2.4+2 = 0.8
so, the minimum production level is costing $800 (0.8×$1000) per hour for 2000 (2×1000) items produced per hour.
Answer:
Step-by-step explanation:
you divide 025./=6.257 x 10 is 5